1 Today

- Examples of Fourier representations for basic functions
- Learning via Fourier representations ("low degree algorithm")

2 Two Examples of Fourier representation of basic functions

2.1 AND on $T \subseteq [1..n]$ such that $|T| = k$

Definition 1 (AND function)

$$\text{AND}(x) = \begin{cases} 1 & \text{if } \forall \in T, x_i = -1 \\ -1 & \text{otherwise} \end{cases}$$

Define

$$f(x) = \begin{cases} 1 & \text{if } \forall \in T, x_i = -1 \\ 0 & \text{otherwise} \end{cases} = \frac{1 - x_i_1}{2} \cdot \frac{1 - x_i_2}{2} \cdots \frac{1 - x_i_k}{2} = \sum_{S \subseteq T} \frac{(-1)^{|S|}}{2^k} \chi_S$$

Then we have

$$\text{AND}(x) = 2f(x) - 1 = (-1 + 2 \cdot \frac{1}{2^k}) + \sum_{S \subseteq T, S \neq \emptyset} \frac{(-1)^{|S|}}{2^{k-1}} \chi_S$$

2.2 Decision Trees

![Decision Tree Diagram](image)

Figure 1: Decision Tree
Definition 2 (path functions)

\[
 f_i(x) = \prod_{i \in V_i} (1 \pm x_i) \quad \text{(Sign depends on whether the path go left or right)}
\]

\[
 = \frac{1}{2^{|V|}} \sum_{S \subseteq V_i} (\pm 1)^\# \text{ of left turns in the path } x_S
\]

\[
 = \begin{cases}
 1 & \text{if } x \text{ takes path } l \\
 0 & \text{otherwise}
 \end{cases}
\]

Notice that no input reach more than one leaf, so we can define the decision tree as

\[
 f(x) = \sum_l f_l(x) \cdot \text{value}(l)
\]

3 Learning via Fourier Representation

3.1 Fourier Concentration

Definition 3 \(f : \{-1\}^n \to \mathbb{R} \) has \(\alpha(\epsilon, n) \)-Fourier concentration if

\[
 \sum_{S \subseteq [n], |S| > \alpha(\epsilon, n)} \hat{f}(S)^2 \leq \epsilon
\]

Remark For boolean function \(f \), by Parseval’s theorem, this implies

\[
 \sum_{S \subseteq [n], |S| \leq \alpha(\epsilon, n)} \hat{f}(S)^2 \geq 1 - \epsilon
\]

Observe 1 If \(f \) doesn’t depend on \(x_i \), then all \(\hat{f}(S) \) for which \(i \in S \) satisfy \(\hat{f}(S) = 0 \).

Observe 2 Any function depends on most \(k \) variables has

\[
 \sum_{S, |S| > k} \hat{f}(S)^2 = 0
\]

which implies \(k \)-Fourier concentration.

Lemma 1 \(f = \text{AND} \) on \(T \subseteq [1...n] \) has \(\log(\frac{1}{\epsilon}) \)-Fourier concentration.

Proof Let \(k = |T| \)

- If \(k \leq \log(\frac{1}{\epsilon}) \), we’ve done by the previous observation.
- If \(k > \log(\frac{1}{\epsilon}) \), we will show \(f \) has 0-Fourier concentration. Notice

\[
 \hat{f}(\emptyset)^2 = (-1 + \frac{2}{2^k})^2 > 1 - \epsilon
\]

So

\[
 \sum_{S, |S| > 0} \hat{f}(S)^2 \leq \epsilon
\]

which implies \(f \) has 0-Fourier concentration.
3.2 Low Degree Algorithm

- Given degree \(d \), accuracy \(\tau \), confidence \(\delta \)
- Take \(m = O(\frac{n^d}{\tau} \ln \frac{n^d}{\delta}) \) samples
- For each \(S \) such that \(|S| \leq d \), \(C_S \leftarrow \) estimate of \(\hat{f}(S) \)
- Output \(h(x) = \sum_{|S| \leq d} C_S \chi_S(x) \)
- Use \(\text{sign}(h(x)) \) for hypothesis

3.3 Approximating Functions with Low Fourier Degree

Claim 2 With probability \(\geq 1 - \delta \), \(\forall S \) such that \(|S| \leq d \), \(|C_S - \hat{f}(S)| \leq \gamma \) for \(\gamma \leftarrow \sqrt{\frac{2}{n\delta}} \).

Proof Since samples are taken randomly, this claim can be proved by Hoeffding Bound and Union Bound.

Theorem 3 If \(f \) has \(d = \alpha(\epsilon, n) \)-Fourier concentration, then \(h \) satisfies \(E_x[(f(x) - h(x))^2] \leq \epsilon + \tau \) with probability \(\geq 1 - \delta \).

Proof Define \(g(x) = f(x) - h(x) \). Then we have \(\hat{g}(S) = \hat{f}(S) - \hat{h}(S) \). By definition, \(\forall S \) such that \(|S| > d \), \(\hat{h}(S) = 0 \Rightarrow \hat{g}(S) = f(S) \). By claim, \(\forall S \) such that \(|S| \leq d \), \(\hat{h}(S) = C_S \Rightarrow |\hat{g}(S)| \leq \gamma \). Thus,

\[
E_x[(f(x) - g(x))^2] = E_x[g(x)^2] = \sum_S \hat{g}(S)^2 = \sum_{|S| \leq d} \gamma^2 + \sum_{|S| > d} \hat{f}(S)^2 \leq \tau + \epsilon
\]

3.4 \(\text{sign}(h) \) is useful for prediction

Theorem 4 Let \(f : \{\pm 1\}^n \rightarrow \{\pm 1\} \) and \(h : \{\pm 1\}^n \rightarrow \mathbb{R} \), then \(\Pr[f(x) \neq \text{sign}(h(x))] \leq E[(f(x) - h(x))^2] \).

Proof

\[
E[(f(x) - h(x))^2] = \frac{1}{2^n} \sum (f(x) - h(x))^2
\]

\[
\Pr[f(x) \neq \text{sign}(h(x))] = \frac{1}{2^n} \sum 1_{\text{sign}(h(x)) \neq f(x)}
\]

Notice that \((f(x) - h(x))^2 \geq 1_{f(x) \neq \text{sign}(h(x))} \). This is because if \(f(x) = \text{sign}(h(x)) \), \(1_{f(x) \neq \text{sign}(h(x))} = 0 \leq (f(x) - h(x))^2 \). If \(f(x) \neq \text{sign}(h(x)) \), \(1_{f(x) \neq \text{sign}(h(x))} = 1 \leq (f(x) - h(x))^2 \). Then we can directly prove this theorem.

Theorem 5 If \(C \) has Fourier concentration \(d = \alpha(\epsilon, h) \). There is a \(q = O(\frac{n^d}{\tau}) \) sample uniform distribution learning algorithm for \(C \) which outputs hypothesis \(h' \) such that \(\Pr[f(x) \neq h'(x)] \leq 2\epsilon \).

Proof Run low degree with \(\tau = \epsilon \) and outputs \(h \) such that \(E_x[(f(x) - h(x))^2] \neq 2\epsilon \). Let \(h' = \text{sign}(h) \), then \(\Pr[f(x) \neq h'(x)] \leq 2\epsilon \).