
6.842 Randomness and Computation 2012-04-30

Lecture 21
Lecturer: Ronitt Rubinfeld Scribe: Michael Forbes

1 Overview

Today we will finish boosting, and sketch how this implies that every function that is weakly hard
on average has a hardcore set, that is, a subset of the inputs where the function is strongly hard on
average.

2 Boosting

We will first review the algorithm for boosting, as well as the notation and claims surrounding it.
We begin with the algorithm.

• D0 ← D

• Run the weak learner (WL) on D0 to get a hypothesis c1

• Stage i (given c1, . . . , ci) (for i ≤ O(1/(γε)2) steps)

– Let Mi(x) =


1 if Majority(c1, . . . , ci)(x) 6= f(x)

0 if |{j : cj(x) = f(x)}| − |{j : cj(x) 6= f(x)}| ≥ 1/(γε)

1− α if |{j : cj(x) = f(x)}| − |{j : cj(x) 6= f(x)}| = α/(γε)

– Let ci+1 be the result of the weak learner on the distribution Di

Recall that we defined the distribution Di by DMi
(x) = Mi(x)/|Mi|, where |Mi| =

∑
xMi(x) is

a normalizing factor. We also defined the advantage of a hypothesis on a given distribution to be
Advc(M) =

∑
xRc(x)M(x), where

Rc(x) =

{
1 f(x) = c(x)

−1 else

We also defines Ni(x) =
∑

1≤j≤iRci(x). With these definitions, we can observe that

Mi(x) =


1 Ni(x) ≤ 0

0 Ni(x) ≥ 1/(γε)

1− εγNi(x) else

We now recall claims proven in previous classes.

Claim 1 Prx∈DM
[c(x) = f(x)] ≥ 1/2 + γ/2 iff Advc(M) ≥ γ|M |

Claim 2 If Prx∈DM
[c = f] ≥ 1/2 + γ/2 and |M | ≥ ε2n then Advc(M) ≥ γ|M | = γε2n.

The remaining claim to prove is

Claim 3 Ai(x) ≤ 1/(γε) + i · εγ/2

1

where Ai(x) =
∑

0≤j≤i−1Rcj+1
(x)Mj(x). Recall how we used this claim. We considered the 2n× i0

sized matrix, where the rows are indexed by x ∈ {0, 1}n and the columns are indexed by stages in
our boosting algorithm. The entry in position (x, j) is Rcj+1

(x)Mj(x). It follows that the column
sums are the advantages of the hypotheses we have generated so far. By the above claims, we have
that each column sum is at least γε2n, as the fact that each |Mj | ≥ ε2n follows from our termination
condition (if |Mj | < ε2n then we are done learning).

The row sums of this matrix are the values of Ai0(x). Now consider the total sum of the entries
in the matrix. The sum is the same regardless of whether we sum by rows or columns. And, we
have an upper bound on the sum of each row, and a lower bound on the sum of each column. As we
know the number of rows, it follows that we can derive an upper bound on the number of columns
in the matrix. We saw how this occurred last time, and how the above claim is all that remains to
be proven.

To prove this claim, we will use an “elevator argument”. The main principle is that when
travelling in an elevator, the number of times you cross from floor k to floor k + 1 must be within
1 of the number of times you cross from floor k + 1 to floor k. This idea, not hard to prove, will be
key in the following argument.
Proof [Proof of Claim] Consider the graph of Ni(x) as i increases over time. Each time i increases,
the sum Ni =

∑
i≤j≤iRcj (x) changes by ±1, corresponding to whether the latest hypothesis predicts

f(x) correctly. Thus, the plot of Nj(x) will have a slope of ±1 at each step. We wish to show that
the average slope of Ai(x) (which weights the terms with Mj(x)) is much less than 1.

To do this, we will pair occurrences of “Nj(x) = k and Nj+1(x) = k + 1” and “Nj′(x) = k + 1
and Nj′+1(x) = k”. Specifically, consider the contribution of the j and j′ term to Ai(x), seen by

Rcj+1
(x)Mj(x) +Rcj′+1

(x)Mj′(x)

Note that Rcj+1
(x) = 1 and Rcj′+1

(x) = −1 by choice of j — as Rcj+1
(x) = Nj+1(x) −Nj(x). We

now have that

Rcj+1
(x)Mj(x) +Rcj′+1

(x)Mj′(x) = Mj(x)−Mj′(x)

=


0 if k ≤ −1, as Mj(x) = Mj+1(x) = 1

0 if k ≥ 1/(γε), as Mj(x) = Mj+1(x) = 0

εγ as Mj(x) = 1− εγNj(x) = 1− εγk and

Mj′(x) = 1− εγNj′(x) = 1− εγ(k + 1)

So we have established that each such pair contributes at most εγ to Ni(x). As there can be at most
i/2 such pairs, this gives us the εγ/2 term.

However, we note that we may not be able to pair all terms in Ni(x). We can do the pairing
such that all unpaired terms occur at the end, and as such all go in the same direction. If all such
Rcj (x)’s are negative, then as Mj(x) ≥ 0 always, such terms do not increase are sum and thus we
can ignore them for the purpose of an upper bound. If all such Rcj (x)’s are 1, then we can observe
that Ni(x) is bounded by 1/(εγ), for if Ni(x) tries to exceed this, the Mj(x) terms become zero.
Thus, in the summation Ai(x) =

∑
j Rcj+1

(x)Mj(x), there are at most Ni(x) unpaired terms that
are nonzero. Each such non-zero unpaired term is at most 1, so we can only have at most 1/(εγ)
contribution in this unmatched section. Thus, we have covered all terms in the summation of Ai,
and thus get the desired bound.

So having completed this claim, the work from last lecture shows the correctness of the boosting
algorithm.

2

3 Hardcore Sets

We will now apply the boosting algorithm to understand functions that are hard to compute. Our
measure of hardness will be the size of circuit needed to compute the function, where our computation
is done in an average-case sense. That is, we consider computing functions such that the probability
(over the input) that we error is bounded. In this model, we can say a function is very hard to learn
if all circuits of a certain size cannot compute the function with probability better than 1/2 + ε. A
function is slightly hard to compute if this probability is bounded by 1− δ. The goal of this section
(and next lecture) is to try to amplify hardness: transform a function slightly hard to compute into
one that is very hard to compute.

The relation of this goal to boosting can be seen as follows. To say that a function is weakly
learnable means that we can compute a hypothesis that gets the function correct with probability
at least 1/2 + ε. That is, if we also promise that the hypothesis has a small circuit, then we see that
weak learning of a function implies that the function is not very hard to compute. Correspondingly,
to strongly learn a function means to create a hypothesis that agrees with the function on at least
1 − δ fraction of the inputs. Thus, strong learnability implies the function is not slightly hard to
compute.

Boosting shows that if a function is weakly learnable (on all distributions) then it is strongly
learnable. With the above connection to hardness of computation, we can see the contrapositive: if
a function is slightly hard to compute then it is very hard to compute (on some distribution). We
now make these ideas formal.

Definition 4 f is δ-hard on a distribution D for size g circuits if for any boolean circuit C
of size at most g has Prx∈D[C(x) = f(x)] ≤ 1− δ

We now define the notion of being very hard to compute.

Definition 5 Let M be a measure. If for all circuits C of size at most g, Prx∈X [C(x) = f(x)] then
f is ε-hardcore (ε-h.c.) on M for size g circuits.

Ideally, in the above we would have that M is a uniform distribution over a set S, and in that case
we would say f is hardcore over that set. We now have the following theorem, due to Impagliazzo.

Theorem 6 Suppose f is δ-hard for size g circuits on the uniform distribution. Then for any ε > 0
there is a measure M such that |M |/2n ≥ δ and so f is ε-hardcore on M for size (εδ)2g/4 circuits.

Proof We follow the contrapositive of boosting. Thus, if there is no such hardcore distribution
then we can weakly learn each distribution with some small circuit, with advantage ε. The boosting
result then shows that we can strongly learn the function over the uniform distribution by taking
a majority of these smaller circuits, and there are 1/(εδ)2 such circuits. As taking the majority
can be done in a linear size circuit, the resulting strong learner would have size < g as a result,
contradicting our hypothesis. Thus, it must be that there is a hardcore distribution.

The above result shows there is a hardcore distribution, but not that there is a hardcore set.
The next theorem gives such a set.

Theorem 7 Let M be an ε/2-hardcore distribution for f for size g circuits. Then there exists a
ε-hardcore set S for f on size g circuits, and |S| ≥ δ2n.

Proof This can be seen as a randomized rounding procedure. Specifically, we randomly take each
element in {±1}n with its probability as in M . One can see that the advantage of a circuit on the
resulting set is a sum of independent random variables, and by applying the Chernoff bound, is close
to its expectation. As the expected hardness is the hardness of M , we get the expected hardness
with good probability, and thus such a set exists.

3

	Overview
	Boosting
	Hardcore Sets

