
6.842 Randomness and Computation May 2, 2012

Lecture 22
Lecturer: Ronitt Rubinfeld Scribe: Alan Guo

Today we will briefly talk about non-uniform complexity classes and Yao’s XOR lemma.

1 Non-uniform complexity classes

Definition 1 Let C be a class of languages (e.g. P, NP) and let a(n) be a length function (e.g. log n).
Define C/a to be the class

C/a = {L | ∃L′ ∈ C and “advice” α1, α2, . . . ∈ {0, 1}∗, |αn| ≤ a(n) ∀n s.t. x ∈ L ⇐⇒ (x, α|x|) ∈ L′}.

Note that the advice string is the same for all inputs of a given length.

For example, P/poly =
⋃
c P/nc is the set of languages computable via Boolean circuits of polynomial

size (the polynomial advice corresponds to the polynomial description of the circuit).

Uniform vs. non-uniform computational model. We use non-uniform complexity classes when
talking about non-uniform models of computation. In the uniform model, we have a uniform Turing
Machine which does the same algorithm regardless of the size of the input, whereas in the non-uniform
model we have a different algorithm for each input size.

We also showed in homework that randomness does not help in the non-uniform model, since we can
hardcode random strings as advice. In fact, we showed that P/poly = RP/poly.

Can we hope to make statements like P/1 = P? Not really, since even P/1 contains undecidable
languages. For example, consider the language L = {x | M|x| halts on the empty string ε}. Then
L ∈ P/1 trivially since the advice bit αn could tell you the answer. (Never mind that we don’t know how
to find αn, the fact that it exists is enough.) Nevertheless, these complexity classes are still interesting.

2 Yao’s XOR Lemma

Throughout this section, we consider functions f : {±1}n → {±1} and when we say ⊕ (the XOR
operation), we really mean multiplication in {±1}.

Recall the following definitions of hard and hardcore from last time.

Definition 2 f is δ-hard on a distribution D for size g if for any Boolean circuit C with at most g
gates,

Pr
x←D{±1}n

[C(x) = f(x)] ≤ 1− δ.

Definition 3 Let S ⊆ {±1}n. Then f is ε-hardcore on S for size g if for every Boolean circuit C with
size at most g,

Pr
x←US

[C(x) = f(x)] ≤ 1
2

+
ε

2
.

Recall the following theorem (actually combination of two theorems from last time).

Theorem 4 If f is δ-hard for size g on the uniform distribution and 0 < ε < 1, then there exists a
2ε-hardcore set S for f for size g′ = 1

4ε
2δ2g with |S| ≥ δ2n.

1

So, if we start with a function f which is a little hard to predict, we can obtain a small set S on
which f is very hard to predict. From this, we can get a function f ′ which is hard to predict on the
whole domain (actually, the Cartesian product of k copies of the domain). In summary,

δ−hard → δ′(ε, δ)−hardcore measure → 2δ′−hardcore set → 2δ′+2(1−δ)k−hard on domain to the k

The function f ′ will simply be the XOR of k copies of f . We will obtain this result immediately
with Yao’s XOR lemma, whose precise statement is as follows. For notational convenience, define
f⊕k(x1, . . . , xk) ≡ f(x1)⊕ · · · ⊕ f(xk).

Theorem 5 If f is ε-hardcore for a set H of size at least δ2n for size g, then f⊕k is ε+2(1−δ)k-hardcore
on {±1}nk for size g − 1.

Proof Assume not. Then there exists a circuit C of size at most g − 1 such that

Pr
x1,...,xn

[C(x1, . . . , xn) = f⊕k(x1, . . . , xn)] ≥ 1
2

+
ε

2
+ (1− δ)k.

Our plan will be to show that for any H such that |H| ≥ δ2n, we will get a circuit C ′ with at most g
gates which guesses f with probability greater than 1

2 + ε
2 .

Constructing C ′: LetAm denote the event that exactlym of x1, . . . , xk are inH. Then Prx1,...,xk
[A0] ≤

(1− δ)k, so Prx1,...,xk
[A0] ≥ 1− (1− δ)k. Therefore,

Pr
x1,...,xk

[C(x1, . . . , xk) = f⊕k(x1, . . . , xk) | A0] ≥ 1
2

+
ε

2
.

By averaging, there exists m ∈ {1, . . . , k} such that

Pr
x1,...,xk

[C(x1, . . . , xk) = f⊕k(x1, . . . , xk) | Am] ≥ 1
2

+
ε

2
.

Now we give the circuit for f on input x ∈ H. To randomly generate a random element of Am, one can
do the following:

1. Pick x1, . . . , xm−1 ∈R H

2. Pick ym+1, . . . , yk ∈R H

3. Permute x1, . . . , xm−1, x, ym+1, . . . , yk via random permutation π.

Denoting x = (x1, . . . , xm−1) and y = (ym+1, . . . , yk), we have

Pr
x,y,π

[C(π(x, x,y)) = f⊕k(π(x, x,y))] ≥ 1
2

+
ε

2
.

By averaging again, there exists x,y, π such that

Pr
x

[C(π(x, x,y)) = f⊕k(π(x, x,y))] ≥ 1
2

+
ε

2
.

Now, let b = C(π(x, x,y))⊕ f(x1)⊕ · · · ⊕ f(xm−1)⊕ f(ym+1)⊕ · · · ⊕ f(yk). Define the circuit C ′ which
computes C(π(x, x,y))⊕ b. Then

Pr
x

[C ′(x) = f(x)] ≥ 1
2

+
ε

2
and moreover C ′ has size at most g, since C(π(x, x,y)) can be computed without adding any more gates
to C and XORing with b takes at most one more gate.

2

