Today we will briefly talk about non-uniform complexity classes and Yao’s XOR lemma.

1 Non-uniform complexity classes

Definition 1 Let C be a class of languages (e.g. P, NP) and let $a(n)$ be a length function (e.g. $\log n$). Define C/a to be the class $C/a = \{L | \exists L' \in C \text{ and } "advice" \alpha_1, \alpha_2, ... \in \{0,1\}^\ast, |\alpha_n| \leq a(n) \forall n \text{ s.t. } x \in L \iff (x, |x|, \alpha_n) \in L'\}$.

Note that the advice string is the same for all inputs of a given length.

For example, $P/poly = \bigcup_c P/n^c$ is the set of languages computable via Boolean circuits of polynomial size (the polynomial advice corresponds to the polynomial description of the circuit).

Uniform vs. non-uniform computational model. We use non-uniform complexity classes when talking about non-uniform models of computation. In the uniform model, we have a uniform Turing Machine which does the same algorithm regardless of the size of the input, whereas in the non-uniform model we have a different algorithm for each input size.

We also showed in homework that randomness does not help in the non-uniform model, since we can hardcode random strings as advice. In fact, we showed that $P/poly = RP/poly$.

Can we hope to make statements like $P/1 = P$? Not really, since even $P/1$ contains undecidable languages. For example, consider the language $L = \{x \mid M_x \text{ halts on the empty string } \epsilon\}$. Then $L \in P/1$ trivially since the advice bit α_n could tell you the answer. (Never mind that we don’t know how to find α_n, the fact that it exists is enough.) Nevertheless, these complexity classes are still interesting.

2 Yao’s XOR Lemma

Throughout this section, we consider functions $f : \{\pm 1\}^n \rightarrow \{\pm 1\}$ and when we say \oplus (the XOR operation), we really mean multiplication in $\{\pm 1\}$.

Recall the following definitions of hard and hardcore from last time.

Definition 2 f is δ-hard on a distribution D for size g if for any Boolean circuit C with at most g gates,

$$\Pr_{x \sim D(\{\pm 1\}^n)}[C(x) = f(x)] \leq 1 - \delta.$$

Definition 3 Let $S \subseteq \{\pm 1\}^n$. Then f is ϵ-hardcore on S for size g if for every Boolean circuit C with size at most g,

$$\Pr_{x \sim U_S}[C(x) = f(x)] \leq \frac{1}{2} + \frac{\epsilon}{2}.$$

Recall the following theorem (actually combination of two theorems from last time).

Theorem 4 If f is δ-hard for size g on the uniform distribution and $0 < \epsilon < 1$, then there exists a 2ϵ-hardcore set S for f for size $g' = \frac{1}{4}\epsilon^2\delta^2g$ with $|S| \geq 2^n$.

1
So, if we start with a function \(f \) which is a little hard to predict, we can obtain a small set \(S \) on which \(f \) is very hard to predict. From this, we can get a function \(f' \) which is hard to predict on the whole domain (actually, the Cartesian product of \(k \) copies of the domain). In summary,

\[
\delta - \text{hard} \rightarrow \delta'(\epsilon, \delta) - \text{hardcore measure} \rightarrow 2\delta' - \text{hardcore set} \rightarrow 2\delta' + 2(1 - \delta)^k - \text{hard on domain to the } k
\]

The function \(f' \) will simply be the XOR of \(k \) copies of \(f \). We will obtain this result immediately with Yao’s XOR lemma, whose precise statement is as follows. For notational convenience, define \(f^\oplus_k(x_1, \ldots, x_k) = f(x_1) \oplus \cdots \oplus f(x_k) \).

Theorem 5 If \(f \) is \(\epsilon \)-hardcore for a set \(H \) of size at least \(\delta 2^n \) for size \(g \), then \(f^\oplus_k \) is \(\epsilon + 2(1 - \delta)^k \)-hardcore on \(\{\pm 1\}^{nk} \) for size \(g - 1 \).

Proof Assume not. Then there exists a circuit \(C \) of size at most \(g - 1 \) such that

\[
\Pr_{x_1, \ldots, x_n} [C(x_1, \ldots, x_n) = f^\oplus_k(x_1, \ldots, x_n)] \geq \frac{1}{2} + \frac{\epsilon}{2} + (1 - \delta)^k.
\]

Our plan will be to show that for any \(H \) such that \(|H| \geq \delta 2^n \), we will get a circuit \(C' \) with at most \(g \) gates which guesses \(f \) with probability greater than \(\frac{1}{2} + \frac{\epsilon}{2} \).

Constructing \(C' \): Let \(A_m \) denote the event that exactly \(m \) of \(x_1, \ldots, x_k \) are in \(H \). Then \(\Pr_{x_1, \ldots, x_k} [A_0] \leq (1 - \delta)^k \), so \(\Pr_{x_1, \ldots, x_k} [\bar{A}_0] \geq 1 - (1 - \delta)^k \). Therefore,

\[
\Pr_{x_1, \ldots, x_k} [C(x_1, \ldots, x_k) = f^\oplus_k(x_1, \ldots, x_k) | \bar{A}_0] \geq \frac{1}{2} + \frac{\epsilon}{2}.
\]

By averaging, there exists \(m \in \{1, \ldots, k\} \) such that

\[
\Pr_{x_1, \ldots, x_k} [C(x_1, \ldots, x_k) = f^\oplus_k(x_1, \ldots, x_k) | A_m] \geq \frac{1}{2} + \frac{\epsilon}{2}.
\]

Now we give the circuit for \(f \) on input \(x \in H \). To randomly generate a random element of \(A_m \), one can do the following:

1. Pick \(x_1, \ldots, x_{m-1} \in_R H \)
2. Pick \(y_{m+1}, \ldots, y_k \in_R \overline{H} \)
3. Permute \(x_1, \ldots, x_{m-1}, x, y_{m+1}, \ldots, y_k \) via random permutation \(\pi \).

Denoting \(\mathbf{x} = (x_1, \ldots, x_{m-1}) \) and \(\mathbf{y} = (y_{m+1}, \ldots, y_k) \), we have

\[
\Pr_{x, y, \pi} [C(\pi(\mathbf{x}, \mathbf{y})) = f^\oplus_k(\pi(\mathbf{x}, \mathbf{y}))] \geq \frac{1}{2} + \frac{\epsilon}{2}.
\]

By averaging again, there exists \(\mathbf{x}, \mathbf{y}, \pi \) such that

\[
\Pr_x [C(\pi(\mathbf{x}, \mathbf{y})) = f^\oplus_k(\pi(\mathbf{x}, \mathbf{y}))] \geq \frac{1}{2} + \frac{\epsilon}{2}.
\]

Now, let \(b = C(\pi(\mathbf{x}, \mathbf{y})) \oplus f(x_1) \oplus \cdots \oplus f(x_{m-1}) \oplus f(y_{m+1}) \oplus \cdots \oplus f(y_k) \). Define the circuit \(C' \) which computes \(C(\pi(\mathbf{x}, \mathbf{y})) \oplus b \). Then

\[
\Pr_x [C'(x) = f(x)] \geq \frac{1}{2} + \frac{\epsilon}{2}
\]

and moreover \(C' \) has size at most \(g \), since \(C(\pi(\mathbf{x}, \mathbf{y})) \) can be computed without adding any more gates to \(C \) and XORing with \(b \) takes at most one more gate. ■