6.842 Randomness and Computation May 14, 2012

Lecture 25
Lecturer: Ronitt Rubinfeld Scribe: Cesar A. Cuenca

1 Review from last time:

Definition 1 f is a one-way function if
1. f is computable in polynomial time.

2. For all PPT algorithms A, there exists a negligible function € such that for all sufficiently large n,
we have

Prazeqou[A(f(2)) € f7H(f(2))] < e(n). (1)

Observation 2 If f is a one-way permutation, the definition above can be changed by replacing equa-
tion (1) with:
Pry oo [A(f()) = 2] < e(n). (2)

Theorem 3 One-Way Functions exist iff Efficient Pseudo-Random Generators (PRGs) exist.

Last time we proved that any efficient PRG G is also a one-way function. Proving the forward
direction of the theorem is much more involved. The plan for today is to show instead that if one-way
permutations exist, then efficient PRGs exist. The fact that one-way permutations are used instead helps
us in two ways. First, we can make use of the definition in Observation 2. Second, if f : {0,1}" — {0,1}"
and x is uniformly chosen in {0,1}", then the distribution of f(x) is also uniform in {0,1}". Before
proving our desired result, we will need some prior definitions and theorems.

2 Hardcore bits

Definition 4 The function b: {0,1}* — {0,1} is a hard-core predicate for the one-way function f if
for all PPT algorithm A, there is a negligible function € such that for all sufficiently large n, we have

Procion A (@) = ba)] < 5 +e(n). 3)

Observation 5 Most commonly, b is called a hard-core predicate, but in class and hereinafter, we will
call b a hardcore bit.

Theorem 6 If b is a hardcore bit for the one-way permutation f :{0,1}" — {0,1}", then the function
G :{0,1}" — {0, 1} defined by G(z) = f(x)|b(z) (concatenation of b(x) to f(x)) is a PRG that maps
any value x € {0,1}" to some value in {0,1}"* (i.e. one-bit stretch).

Proof First, observe that f(x) is next-bit unpredictable because if x < {0,1}™ is chosen uniformly,
then the distribution of f(z) is also uniform in {0, 1}" implying that knowing the first i bits of f(x) does
not help in predicting the ¢+ 1 bit with probability better than % + ,%k for any k. Second, note that from
the definition of hardcore bit, for any PPT algorithm A, inequality (3) is satisfied; this implies that no
algorithm can predict b(x) (the last bit of G(z)) even if it knows f(z) (the previous bits of G(x)). Both
points imply that G is next-bit unpredictable. From a theorem we proved last class, we conclude that
G isa PRG.

The theorem above shows how to obtain one-bit stretch in randomness. We can extend the construc-
tion to obtain k bits of stretch as follows:

Define for any j € Z., the function fU) = fo fo...o f, which is f composed with itself j times.

Theorem 7 If f:{0,1} — {0,1} is a one-way function with an efficiently computable hardcore bit b,
then the function G : {0,1} — {0,1}" defined by G(z) = b(f™=V(x))[b(f™=2 ()] ... |b(f(x))|b(z) is
a PRG for all n, polynomial in 1 (i.e. n = P(l) for some polynomial P).

Proof We will assume the opposite, which is that G is not a PRG. Then G is next-bit predictable.
This implies there exists a PPT algorithm P that can predict bit ¢ of the output of G for some ¢, i.e.

- n— n—i n—i].]_
Pro o1y PO @)b(f"2 (@))] . [b(f7 D (@) = b(f) (2))] > 3t oE (4)
for some constant k. After setting y = f("~%(z), notice that because f is a permutation (and so is
f=9), then y is uniform in {0,1}" if 2 is. Then we can rewrite this equation as

Prycoap [POGV @B W) = b)) > 5 + . 5)
Having (5), we will construct a PPT algorithm P’, such that Pr,. (o1 [P'(f(y)) = b(y)] > 3+ F,
contradicting the fact that b is a hardcore bit of f. Algorithm P’, on an input z, will compute f@)(z)
for 1 < j <i—2. Then P’ computes b(f\)(x)) for all 0 < j < i — 2, obtains the concatenation
z = b(fO2 (@) b(fE=3(2))]...[b(fP(2))|b(f(2))|b(z), applies algorithm P to z and finally outputs
the result of P(z). Note the following two points. First, if x = f(y), then it is clear from (5) that
the probability that P’ succeeds is % + n% Second, because b is efficiently computable, then P’ is a
PPT algorithm. Both points imply that P’ successfully computes b(y) from input f(y) with at least
probability 3 + -, i.e. b is not a hardcore bit (=><=). Hence G is a PRG. B

The above theorem shows how to construct a PRG from a hardcore bit for a one-way function, but we
are not even sure a hardcore bit exists. In the next section, we show that for any one-way permutation
f, we can construct a one-way permutation f’ from f, and a hardcore bit b for f’.

3 Goldreich-Levin Theorem

Theorem 8 (Goldreich-Levin) If f is a one-way function, then b : {0,1}* — {0,1}, defined by
b(x,r) = (x,7), is a hardcore bit for the one-way function f' defined by f'(z,r) = (f(x),r), with
|z = |r].

As we said before, the proof of this theorem is quite involved. In lecture, we saw the proof for the case
of a one-way permutation f : {0,1}' — {0,1}!. Also, we made the simplifying assumption that f is a
one-way permutation in the circuit complexity model. The proof will go by contradiction by assuming
there is a PPT algorithm A that can predict b(z,r) from f’(x,r). From our last assumption, we can
assume A is a deterministic algorithm.

Finally, before starting with the proof, convince yourself that if f : {0,1}! — {0,1}! is a one-way permu-
tation, then f’: {0,1}% — {0,1}2!, defined as in the theorem for |x| = |r|, is also a one-way permutation.
It is clear that f’ is a permutation of {0, 1}?" if f is a permutation of {0, 1}". It is also true that f’ is a
one-way function if f is one-way. This is an easy exercise (prove that if there is a PPT algorithm that
inverts f’ with non-negligible probability, then one can construct a PPT algorithm that inverts f with
non-negligible probability).

Proof (Simplified Version) We assume the opposite, i.e. there is a poly-time deterministic algo-
rithm A such that Pr,,.[A(f(z),7) = b(z,r) = (z,7)] > B + € for some € = €(l) > ; where k is a

constant and [= |z| = |r| is the number of bits of x and r.

1
Let us define h,(r) = A(f(x),r) and call good to a value z if Pr.[h,(r) = (z,7r)] > 3 + % We claim
that there are at least €/2 good values of z. In fact, assume this is not the case, so there are at most
€/2 good values of x. Observe that for bad values of x, the probability that A guesses b(x,r) correctly is

at most % + g Therefore

Pry JA(f(z),r) = (z,r)] = Prglzis good |Pr.[A(f(z),r) = (x,7)] + Pry[z is bad |Pr.[A(f(z),r) =

€ 1 €
Sxl1alx(=+=
< gxltlx(G+3)

L
= —+4e€
2

which is a contradiction with our initial assumption. Therefore, there are at least § good values of x, as
desired.

Our goal now is to obtain a PPT algorithm B that inverts f for a non-negligible fraction of the inputs,
therefore proving that f is not a one-way function. In fact, we will construct B so that it outputs x
on input z = f(z) if is good. Consider the function A : {0,1}} — {0, 1}, defined by h(r) = A(z,7).
To proceed, we translate the functions we are working with to the Boolean analysis notation (i.e. bit
1 becomes —1 and bit 0 becomes +1). Observe that if S, C [I] is the set that defines x (j € S, iff the
j bit of x is 1), then (z,r) becomes xg, () in Boolean notation. Therefore, if x is good, we have that
1 ~

Pr.lh(r) = xs, (r)] > 3 + %, or h(S;) > e. This makes it simple to construct PPT B. In fact, B first
runs the Goldreich-Levin algorithm to find all the heavy Fourier coefficients of h, the ones for which
. 1

h(S) > §. For those sets, we have that Pr.[h(r) = xs(r)] > 5t 2 Thus, if z = f(z) with good z,
then S, is among the sets outputted by the Goldreich-Levin algorithm with high probability. Then B
can compute f(x) for all « for which S, was outputted by the Goldreich-Levin algorithm and output a
particular xg if f(zg) = z. Otherwise, B just outputs a random value.

The probability that B succeeds on z = f(x), for good x, can be made at least % if we set the confidence
parameter ¢ = % in Goldreich-Levin. Note that since at least § > ﬁ fraction of the inputs x are good,
then B succeeds with probability at least ﬁ for a random z = f(z). This shows that f is not a one-way
permutation (=>-<=). Hence, we conclude that the theorem is true. B

Observation 9 It may not be clear that B runs in polynomial time, because we do not know how many
heavy coefficients h(S) there are. However, remember that there are at most poly(%) of these coefficients,
and since € > %, then this is also polynomial, as desired.

4 For next lecture

Next lecture, we will study the Nisan Pseudorandom Generator. As a warm-up, you might want to think
of the following definition and try to prove the next theorem.

Definition 10 A collection of subsets S1,S5a,...,5nm» C[d] ={1,2,...,d} is a (I,a)—design if
o |Si|=1foralll<i<m.
o |S,NS;|<aforalll <izj<m.

Theorem 11 There ezists a (I, a)—design with a = ylogm and d = O(I?/a) for some m € Z. and all
v > 0.

(

T, T

)]

