
6.895 Randomness and Computation February 22, 2012

Lecture 4
Lecturer: Ronitt Rubinfeld Scribe: Cesar A. Cuenca

1 Overview:

In this lecture, we look at some of the complexity theory aspects of the course and try to find at how
extent we need randomness in computation. The topics for today are:

• Randomized Complexity Classes

• Derandomization via Enumeration

• Pairwise Independence and Derandomization (we will use MAXCUT as an example)

2 Randomized Complexity Classes:

We start by introducing some of the most basic definitions.

Definition 1 A language L is a subset of {0, 1}∗.

A language L may define all kinds of objects, like graphs that satisfy certain properties, a set of
prime numbers, etc.

Definition 2 P (polynomial time) is the class of languages L for which there is a deterministic
polynomial-time algorithm A such that:

• x ∈ L =⇒ A(x) accepts

• x /∈ L =⇒ A(x) rejects

Now we introduce two of the most important Randomized Complexity Classes.

Definition 3 RP (randomized polynomial time) is the class of languages L for which there is a
polynomial-time (probabilistic) algorithm A such that:

• x ∈ L =⇒ Pr[A(x) accepts] ≥ 1/2

• x /∈ L =⇒ Pr[A(x) accepts] = 0

We can think of RP as the class of languages L with one-sided error. This is, if x ∈ {0, 1}∗ and A(x)
accepts, then we know that x ∈ L; however if A(x) rejects, it may occur that x ∈ L or x /∈ L.

Definition 4 BPP (bounded-error probabilistic polynomial time) is the class of languages L for
which there is a polynomial-time (probabilistic) algorithm A such that:

• x ∈ L =⇒ Pr[A(x) accepts] ≥ 2/3

• x /∈ L =⇒ Pr[A(x) accepts] ≤ 1/3

The class BPP may fail to guess whether or not x ∈ L for any x ∈ {0, 1}∗ (it has two-sided error).
Note also that the constants 2/3 and 1/3 (in the definition of BPP) can be replaced for any other
constants a and b such that 1 > a > 1/2 and 1/2 > b > 0 respectively. Similarly the constant 1/2 in the
definition of RP can be replaced for any constant 1 > c > 0.

1

3 Derandomization via Enumeration

From definitions 2, 3 and 4, we clearly see that P ⊆ RP ⊆ BPP . However, it remains an open question
to determine whether P equals BPP . There have been lots of results about this recently and some
researchers believe that indeed P = BPP . This leads us to believe that it is possible to remove random-
ness (or use as little of it as possible) from any efficient randomized algorithm. A most basic method is
what’s called derandomization via enumeration. The idea is outlined below.

Idea: Assume that a randomized algorithm A randomly makes choices from a domain D of values
(which are strings of bits) and uses them to give an approximate solution to the problem at hand. To
derandomize A, a deterministic algorithm B would instead enumerate all values of D and loop through
all of them to find an optimal solution.

Observation 5 The algorithm B described above is deterministic and gives the optimal solution (for an
optimization problem), but its running time may be very slow. Define TA(n) and TB(n) to be upper bounds
on the runtimes of A and B on inputs of size n respectively. Then we clearly have TB(n) ≤ TA(n)|D|.

Observation 6 Let r(n) be the number of random bits used by A for inputs of size n, then D ⊆ {0, 1}r(n)
and so |D| ≤ 2r(n). In addition, since A uses r(n) random bits (and assuming a bit is chosen in one
unit of time), then r(n) ≤ TA(n). We conclude that |D| ≤ 2TA(n).

From the inequalities derived above, we obtain TB(n) ≤ TA(n)|D| ≤ TA(n)2TA(n). Therefore

TB(n) = O(TA(n)2TA(n)) (1)

Corollary 7 BPP ⊆ EXP =
⋃
k∈N

DTIME(2n
k

)

Proof Indeed, since A is a polynomial-time randomized algorithm, then we can consider TA(n) as a
polynomial in n. Therefore the expression TA(n)2TA(n) is exponential in n. From this observation and
equation (1), the result follows.

Observation 8 If we reduce the number of bits r(n) used by algorithm A, we can find a polynomial-
time algorithm B under this method of derandomization. More specifically, if r(n) = O(lg n) (say r(n) ≤
c lg n for some constant c), the runtime of algorithm B becomes O(TA(n)2r(n)) = O(TA(n)2c lgn) =
O(TA(n)nc), which is polynomial in n.

4 Pairwise Independence and Derandomization

4.1 Randomized MAXCUT:

Oftentimes, the only condition we ever use from randomly selected bits is pairwise independence, and
not independence at its full strength. We use the MAXCUT algorithm as an example to work on a
concrete problem. We will show that the only condition we need from the random bits MAXCUT uses
is pairwise independence (to be abbreviated as p.i.). We begin by defining the Maximum Cut problem.

Input: Graph G = (V,E) (w.l.o.g. assume that V = {1, 2, . . . , |V |}).

Output: A partition S∪T of V that maximizes the cut value f(S, T) = |{{u, v} ∈ E|u ∈ S, v ∈ T}|.

The first attempt to try to solve it could be to toss a coin for each vertex v ∈ V . If the coin gives a
head, then place v in S and otherwise, place it in T , where S ∪ T becomes the partition of V . This

2

simple algorithm (to be called MAXCUT) actually works well; more specifically it returns a partition
V = S ∪ T whose value f(S, T) is at most half the maximum value for a cut of G (in average).

Randomized MAXCUT

for i = 1 to |V | do
Let randBit be a random bit uniformly chosen (from {0, 1})
if randBit = 0 then

S ← S ∪ {i}
else

T ← T ∪ {i}
end if

end for

Analysis of the algorithm: First, define a function side : V → {S, T} so that side(v) (to be denoted
as rv) is the set of the partition where v belongs. Also define the next indicator random variables for
u 6= v in V :

Iside(u)6=side(v) = Iu,v =

{
1 if ru 6= rv
0 if ru = rv

Clearly the value of f(S, T) of the cut is the number of edges (u, v) for which side(u) 6= side(v), or

more formally f(S, T) =
∑

(u,v)∈E

Iu,v. Therefore:

E[f(S, T)] = E[
∑

(u,v)∈E

Iu,v] =
∑

(u,v)∈E

E[Iu,v] (2)

=
∑

(u,v)∈E

P[ru 6= rv] (3)

=
∑

(u,v)∈E

P[{ru = 1 ∧ rv = 0} ∨ {ru = 0 ∧ rv = 1}] (4)

=
∑

(u,v)∈E

P[ru = 1]P[rv = 0] + P[ru = 0]P[rv = 1] (5)

=
∑

(u,v)∈E

1

2
=
|E|
2

(6)

,where (2) comes from linearity of expectation; (3) comes from the definition of Iu,v; (4) comes from
the interpretation of the event {ru 6= rv}; (5) comes from the fact that events {ru = 1 ∧ rv = 0} and
{ru = 0 ∧ rv = 1} are disjoint and events {ru = a} and {rv = b} (for any a, b ∈ {0, 1}) are independent;
finally (6) comes from noticing all probability values involved are 1/2.

Observation 9 Note that the maximum value of any cut cannot exceed |E|, and we just proved that
the expected value of the cut returned by MAXCUT is |E|/2. Then we proved that MAXCUT gives a
multiplicative approximation to within the factor of 2 for the maximum cut problem.

4.2 Pairwise Independent Random Variables:

We now introduce some definitions on independence. Denote the event {X = a ∧ Y = b} by the shorter
form {XY = ab}, if X,Y are random variables which may take on values a, b, respectively. A similar
notation will be used for an arbitrary number of random variables.

3

In the next definitions, the setting is as follows: We have n random variables X1, X2, . . . Xn which have
values from a domain T of size |T | = t, i.e. Xi ∈ T for all 1 ≤ i ≤ n.

Definition 10 We say that X1, X2, . . . , Xn are independent if for all values b1, b2, . . . , bn ∈ T , we
have that

P[X1X2 . . . Xn = b1b2 . . . bn] =
1

tn
.

Definition 11 We say that X1, X2, . . . , Xn are pairwise independent(p.i.) if for any 1 ≤ i < j ≤ n
and any values bi, bj ∈ T , we have that

P[XiXj = bibj] =
1

t2
.

Definition 12 We say that X1, X2, . . . , Xn are k-wise independent if for any 1 ≤ i1 < . . . < ik ≤ n
and any values b1, . . . , bk ∈ T , we have that

P[Xi1 . . . Xik = b1 . . . bk] =
1

tk
.

Observation 13 From definitions 10, 11 and 12, we see that p.i. is weaker than k-wise independence,
which in turn is weaker than independence. This is a key observation, because we will see that if an
algorithm only uses p.i., then we may reduce (or totally eliminate) the amount of randomness used by
the algorithm. We do this in the next subsection for the MAXCUT algorithm.

4.3 Derandomization of Randomized MAXCUT

First attempt: By using enumeration, we now derandomize MAXCUT. In fact, enumerate all pos-
sible strings of bits of length |V |, which are used to find the partition S ∪ T of V . There are a total of
2|V | = 2n strings. The deterministic algorithm we obtain under this method finds the optimal solution,
but its running time (as analyzed before, when describing the enumeration method) is exponential, more
specifically O(2nTMC(n)), where TMC(n) is the time MAXCUT takes on inputs of size n.

Second attempt: Instead of using enumeration, we will use partial enumeration. The key observa-
tion is that MAXCUT only requires the random bits that it uses to be pairwise independent. First we
will show how one can use O(lg n) random bits to generate O(n) p.i. bits. Then we see how to make
another randomized algorithm MAXCUT that uses exponentially fewer random bits and has a similar
behavior to MAXCUT. Finally we show how to derandomize MAXCUT using enumeration, obtaining a
deterministic algorithm that has the same behavior as MAXCUT and runs in polynomial time.

We start by giving an example of how we can obtain 3 p.i. bits b1, b2 and b3 using only 2 truly
random bits. Instead of tossing a coin to find the bits for all three of b1, b2 and b3, we only toss a coin
for b1 and b2 and then determine b3 deterministically as b3 = b1 ⊕ b2. The truth table looks like this:

b1 b2 b3
0 0 0
0 1 1
1 0 1
1 1 0

Notice that if we delete any of the columns, we obtain all 4 possible combinations of bits for the 2
remaining variables. After some thought, it is clear that b1, b2 and b3 are p.i..

4

More generally, we can generate 2k − 1 p.i. bits using only k truly random bits with the following algo-
rithm, which is called GENERATOR:

- Choose randomly k bits b1, b2, . . . , bk.

- For any non-empty set S ⊆ [k] = {1, 2, . . . , k}, define CS =
⊕
i∈S

bi.

- Then {CS}S⊆[k],S 6=∅ is a set of cardinality 2k − 1, in which the bits are p.i..

The proof that the bits returned by GENERATOR are p.i. is left as an exercise.
Now we show an algorithm that behaves like MAXCUT, but uses significantly less amount of randomness.

Randomized Algorithm MAXCUT

- Produce blg nc+ 1 random bits b1, b2, . . . , bblgnc+1.
- Use the GENERATOR procedure to construct n p.i. bits r1, r2, . . . , rn from b1, b2, . . . , bblgnc+1.
- Use r1, r2, . . . , rn as the random bits used by MAXCUT.

The main point is that this algorithm has the same expected behavior as that of MAXCUT, but
uses only O(lg n) random bits, as opposed to O(n) random bits of our first attempt. This decrease
allows us to use enumeration to find a much more efficient deterministic algorithm. In fact, MAXCUT
makes blg nc+ 1 random choices. We can then enumerate all possible strings of blg nc+ 1 random bits,
and loop through all of them keeping the best solution so far. This deterministic algorithm, by the
analysis made when we described derandomization by enumeration, has runtime O(2blgnc+1.TMC(n)) =
O(2 × 2lgn × TMC(n)) = O(nTMC(n)), where TMC(n) is a polynomial bound on the time used by
MAXCUT. Therefore this deterministic algorithm takes only polynomial time. Note that this new
algorithm no longer tries all partitions, and thus does not guarantee achieving the optimal solution (as
we had with the exponential time derandomization).

5

