
6.842 Randomness and Computation March 7, 2012

Lecture 9
Lecturer: Ronitt Rubinfeld Scribe: Henry Yuen

1 Last time

Last time we talked about random walks on graphs, and in particular random walks on undirected
graphs. We saw that performing a random walk on an undirected graph would solve the undirected
s− t connectivity problem in randomized logspace. We also saw that the time it takes for a random
walk on a graph (that’s undirected, d-regular and ergodic) to approach the stationary distribution
(which is the uniform distribution over the nodes) within ε in `2 norm takes time about log ε/ log λ2.

2 Today

Today we will see how random walks can be used to save randomness in randomized algorithms
while attaining very low error. Suppose we had a polynomial time randomized algorithm A for a
language L ∈ RP with the following property:

• x ∈ L: Prw[A(x,w) doesn’t accept] ≤ 1/100, and

• x /∈ L: Prw[A(x,w) accepts] = 0, and

• A uses r(n) bits of randomness.

Previously, we saw two ways in which the error of this algorithm could be reduced to 2−k:

1. Run A k times, using new randomness for each repetition. This uses r · k random bits, and
has running time k · T (n) (where T (n) is the running time of A; or

2. Run A on pairwise independent randomness. This uses O(r+k) random bits, and has running
time O(2k · T (n)).

We will describe a new method that combines the time efficiency of Method 1 with the randomness
efficiency of Method 2, and this will be done via random walks on a special type of graph, called an
expander graph.

3 A Special Kind of Graph

We will postulate that we can construct a family of undirected graphs Gn = (Vn, En) with the
following properties:

1. Gn has constant degree (i.e. there is a constant d such that the maximum degree of Gn is
bounded by d);

2. Gn is regular;

3. λ2 ≤ 1/10 (where λ2 is the second largest eigenvalue of the transition matrix corresponding to
Gn);

4. Gn is ergodic (this is redundant, because of the λ2 property above);

9-1

5. |Vn| = 2r(n);

6. Given a node v ∈ Vn, the neighbors of v can be computed efficiently (in n).

It turns out that it is possible to construct a graph family with all these magical properties: such
constructions are called expander graph constructions. Here, we will take the construction of these
graphs for granted. Importantly, any expander graph construction that has the above properties
will suffice for the error reduction procedure we describe next.

4 Error reduction for A
We describe the algorithm to reduce the error of A:

• Algorithm A′(x):

– Pick a random node w in Gn.

– Repeat k times:

∗ Run A(x,w). If A accepts, then halt and accept.

∗ Otherwise, pick a random neighbor of w and set w equal to that neighbor.

– If the algorithm has not accepted by this time, reject.

Clearly, the running time of A′ is O(k(T (n) +Q(n))), where T (n) is the running time of A and
Q(n) is the time it takes to pick a random neighbor in Gn. We assume here that Q(n) is negligible
compared to T (n).

The randomness effiency is r(n) +O(k): r(n) bits of randomness are required to pick the initial
start node w. Then, for each iteration of the loop, a random neighbor has to be picked. Since each
node has d neighbors and d is constant, each step of the random walk requires log d = O(1) random
bits.

We now argue that the error of A′ is very low:

Claim 1 The error probability of A′ is at most 1
5k

.

Before diving into the proof, let us spend a few moments to reflect on this algorithm. We have
essentially applied a graph structure to the space of all possible random strings that could be used
by the original algorithm A. For a fixed input x, the set of bad random strings Bx (random strings
that cause A to err on x) contains at most 1/100 of all the possible nodes. Because of the one-sided
error property of A, we only need to encounter just one good random string in order to succeed.

Our algorithm A′ will take a random walk on this graph of random strings, and because of the
λ2 condition stipulated above, this graph has very good mixing properties: it is very unlikely for a
random walk to be trapped within Bx. The following proof formalizes this intuition.

Proof Suppose input x 6∈ L. Then because of the soundness property of A, A will never accept
x, no matter the randomness. Thus A′ will never accept on x, and hence the error is 0.

Now suppose x ∈ L. Define N to be the diagonal matrix where Nww = 1 if and only if w ∈ Bx.
Otherwise, Nww = 0 (and 0 everywhere off the diagonal). Let q be some distribution on nodes of
Gn. Then ||q ·N ||1 is precisely the probability of drawing a bad string from q.

Let P be the transition matrix corresponding to Gn. Then observe that ||qNPN ||1 is the
probability of drawing a bad string from q, and that taking a random walk with starting distribution
q will also yield a bad string. More generally,

∣∣∣∣q(NP)kN
∣∣∣∣
1

is the probability that the first k + 1
steps of the random walk yield a bad string.

We will use the following lemmas, which we will prove later, to arrive at our desired claim:

9-2

Lemma 2 For all π such that
∑
πi ≤ 1 and πi ≥ 0 for all i, ||πPN ||2 ≤

1
5 ||π||2.

Lemma 3 For all x ∈ Rm, ||x||1 ≤ 2m/2 ||x||2.

A′ starts the random walk with the uniform distribution π0. The probability that after k itera-
tions, A′ does not accept is precisely

∣∣∣∣π0(NP)kN
∣∣∣∣
1
. This is bounded from above by

∣∣∣∣π0(PN)k
∣∣∣∣
1
,

where we have ignored the first N factor. This is because without the first N terms we are now
allowing the initial choice of random string to fall outside the bad set, which means there are more
ways of arriving at the bad set after k steps. Hence,

Pr[A′ does not accept] ≤
∣∣∣∣π0(PN)k

∣∣∣∣
1

≤ 2r/2
∣∣∣∣π0(PN)k

∣∣∣∣
2

≤ 2r/2
1

5k
||πo||

≤ 1

5k
.

Proof (Of Lemma 2). Since Gn is d-regular, we have that P is symmetric and hence diagonaliz-
able. Let {vi} be the orthonormal basis in which P is diagonal, such that 1 = λ1 > |λ2| ≥ · · · ≥ |λ2r |.
Let π =

∑
αivi. Then,

||πPN ||2 =

∣∣∣∣∣
∣∣∣∣∣α1v1PN +

∑
i>2

αiviPN

∣∣∣∣∣
∣∣∣∣∣
2

≤ ||α1λ1v1N ||2 +

∣∣∣∣∣
∣∣∣∣∣∑
i>2

αiλiviN

∣∣∣∣∣
∣∣∣∣∣
2

where the second line follows from the triangle inequality. We bound each term separately. Since
λ1, and v1 = 1

2r/2
〈1, 1, . . . , 1〉, we have that ||α1λ1v1N ||2 = α1 ||v1N ||2 ≤ α1

√
1/100 ≤ 1

10 ||π||2.

For the second term, we note that ||
∑
αiλiviN ||2 ≤ |λ2| ||

∑
αiviN ||2 ≤

1
10 ||π||2, because mul-

tiplying by N does not grow the length of a vector. Combining the two bounds yields the lemma.

Proof (Of Lemma 3). This follows from applying Cauchy-Schwarz: (
∑
xi)

2
= (

∑
1 · xi)2 ≤(∑

12
) (∑

x2i
)

= 2m
(∑

x2i
)
.

This (temporarily) concludes the section on random walks on graphs. Next, we turn towards
the topics of Fourier Analysis and Linearity Testing. We end this class with a prelude of program
checking.

5 Program Checking and Linearity Testing

Suppose you can’t prove that a program P correctly computes f(x) on all inputs x, but you don’t
care – you just want to verify that it’s correct on a specific input. Is it possible to create a program
checker C that will do this for you? We’d want a program that would tell us if P (x) is correct or
not. Of course, the checker itself might be faulty, but what we want is for the checker to be faulty
in a way that’s independent of the way P is faulty. A program that admits such a program checker
is called checkable. What kind of programs are checkable?

One class of checkable programs are ones computing functions that are close to linear. Let’s see
some definitions.

9-3

Definition 4 (Linear function) A function f : {0, 1}n → {0, 1} is linear if and only if for all
x, y ∈ {0, 1}n, f(x+ y) = f(x) + f(y), where addition is performed component-wise modulo 2.

Definition 5 (ε-close to linear) A function g : {0, 1}n → {0, 1} is ε-close to linear if and only if
there exists a linear function f such that Prx[g(x) = f(x)] ≥ 1− ε.

We describe one component of a program checker, called a self-corrector, for programs that
compute linear functions. Suppose we have a program P computing a function g that is ε-close to a
linear function f , and we intended P to compute f . We can correct P so that it computes f exactly.

• Program Self-Corrector(x)

– For O
(
1
ε

)
iterations:

∗ Pick y ∈ {0, 1}n uniformly at random.

∗ Let α← P (x+ y) + P (y).

– Output the majority of the α’s.

Claim 6 With very high probability, Self-Corrector will compute f .

Proof Note that at each iteration, y is chosen uniformly at random, so thus x + y and y are
uniformly distributed. Thus, with probability at least 1− 2ε, P (x+ y) = f(x+ y) and P (y) = f(y).
By the linearity of f , P (x+y)+P (y) = f(x+y)+f(y) = f(x). Since we’re picking y independently
with each iteration, the probability that the majority of the α’s agree with f(x) rapidly approaches
1. Thus, with high probability, Self-Corrector will output the correct value of f(x).

Generally, program checkers will combine self correctors with program “testers”, which we still study
next time.

9-4

