
6.842 Randomness and Computation February 10, 2014

Lecture 2
Lecturer: Ronitt Rubinfeld Scribe: Pasin Manurangsi

1 Review

In lecture one, we showed how to prove the existence of combinatorial objects by proving that the
probability that at least one of the bad events occur is less than one. We explored two bounds for this
purpose. The first bound was the union bound stated as follows.

Theorem 1 Given events A1, . . . , An, we have

Pr[

n⋂
i=1

Ai] ≥ 1−
n∑
i=1

Pr[Ai].

While the union bound does not need any assumption on the independence of A1, . . . , An at all, it is a
very weak bound, i.e., one needs most of Pr[Ai]’s to be no more than 1

n for the bound to be useful. In
the previous lecture, we also took a look at another bound which is an opposite of the union bound. In
this bound, a strong assumption is made and the bound is strong too. The bound is stated below.

Theorem 2 Given events A1, . . . , An. If they are all independents, then

Pr[

n⋂
i=1

Ai] =

n∏
i=1

(1− Pr[Ai]).

In contrast to the union bound, this bound yields existence of good events requiring only that Pr[Ai]’s
are not one. It does, however, make a very strong assumption that all Ai’s are independent.

A natural question to ask is whether we can get a better bound than the union bound when only some
of the events are independent. In this lecture, we will study such bound named Lovász Local Lemma.

2 The Lovász Local Lemma

Before we proceed to the lemma, let us first recall the definition of independent

Definition 3 An event A is independent of events B1, . . . , Bn if for all nonzero subsets J ⊆ [n],

Pr[A ∩

⋂
j∈J

Bj

] = Pr[A] · Pr[
⋂
j∈J

Bj ].

Note that, in our notation, independent is not the same as pairwise independent. Generally speaking,
our notation of independent is stronger.

Next, with our notion of independent, we will define a dependency digraph of events.

1



Definition 4 Let A1, . . . , An be events. An undirected graph D = (V,E) with V = [n] is a dependency
digraph of A1, . . . , An if each Ai is independent of the set of all Ai’s that do not neighbor it in D.

With notation of dependency graph in place, we now will state the symmetric version of the Lovász
Local Lemma.

Theorem 5 (Lovász Local Lemma) Let A1, . . . , An be events such that Pr[Ai] ≤ p for all i = 1, . . . , n
and let D be the dependency digraph of A1, . . . , An. Suppose that each vertex in D is of degree at most
d. If ep(d+ 1) ≤ 1, then Pr[

⋂n
i=1Ai] > 0. [EL75] [Spe77]

It is worth pointing out that, the condition necessary for the Lovász Local Lemma to yeild Pr[
⋂n
i=1Ai] >

0 is p ≤ 1
e(d+1) = Θ( 1

d ), which, unlike the union bound that needs p < 1
n , does not depend on n.

3 Applications

We will not show the proof of the Lovász Local Lemma but we will jump right ahead to some of its
applications.

3.1 Two-Coloring Revisited

With the help of the Lovász Local Lemma, we can achieve the following result for the two-coloring
problem discussed last lecture.

Theorem 6 Given S1, . . . , Sm ⊆ S such that |Si| = l. Suppose that each Si intersects at most d other
Si’s. If e(d+ 1) ≤ 2l−1, then we can two-color S such that each Si is not monochromatic.

Note that, with the union bound, we were only able to prove the existence of two-coloring when m < 2l−1.
As a result, the theorem above covers many more cases.

Proof Color each element of S independently with red or blue each with probability 1
2 . Define Ai to

be the event where Si is monochromatic. We have

Pr[Ai] = Pr[all elements of Si are colored blue] + Pr[all elements of Si are colored red]

=
1

2l
+

1

2l

=
1

2l−1
.

Observe that Ai is independent of all Aj ’s such that Si∩Sj = ∅. As a result, we can build a dependency
digraph of A1, . . . , An by connecting Ai to Aj if and only if Si ∩ Sj 6= ∅. In this digraph, degree of each
vertex is at most d.

Thus, since we assume that e(d + 1) ≤ 2l−1, from the Lovász Local Lemma, we can conclude that
Pr[
⋂n
i=1Ai] > 0. Hence, there exists a two-coloring such that each Si is not monochromatic.

2



3.2 Boolean Satisfiability Problem

The Lovász Local Lemma is useful for not only for two-coloring problem but for boolean satisfiability
problem as well. Namely, if each variable does not appear in too many clauses, then there exists a
satisfying assignment.

Theorem 7 Given a conjunctive normal form formula such that each clause contains l variables and
that each variable appears in at most k clauses. If e(lk + 1) ≤ 2l−1, then the formula is satisfiable.

We will not state the proof here but it is straightforward.

4 The Moser-Tardos Algorithm

While the Lovász Local Lemma can be used to prove existences of combinatorial objects, it does not give
us a constructive way to find that object. In this section, we will survey the Moser-Tardos algorithm,
which gives a constructive way to find a valid two-coloring.

4.1 History

Before we describe the Moser-Tardos algorithm, here is a brief timeline of significant developments from
the Lovász Local Lemma to the Moser-Tardos algorithm. Note that the result below is rephrased in
terms of the two-coloring problem.

• In 1975, Lovász and Erdõs proved the Lovász Local Lemma with bound d+ 1 ≤ 2l−2 [EL75]. Note

that this is slightly weaker than the bound d + 1 ≤ 2l−1

e we stated above; this better bound first
appeared in [Spe77].

• In 1991, Beck showed, in [Bec91], a constructive algorithm to find a valid two-coloring given that

d+ 1 ≤ 2
l
48 .

• In 2009, Moser found a constructive algorithm given that d+1 ≤ 2l−2 [Mos09]. It is later extended
by Moser and Tardos to cover many more problems [MT10].

We will not show the original analysis by Moser and Tardos here. Instead, we will use a simplified
analysis by Chandrasekaran, Goyal and Haeupler [CGH10], which is slightly weaker than the original.

4.2 The Moser-Tardos Algorithm

A symmetric version of the Moser-Tardos Algorithm is very simple. It can be describe as follows:

• Randomly assign a color to each element in S independently and uniformly.

• While there is still a set Si that is monochromatic, randomly assign each element of Si indepen-
dently and uniformly.

3



Even though the algorithm looks very simple, its expected runtime is in fact O(poly(m, l)). We can state
this formally as follows.

Theorem 8 Given S1, . . . , Sm ⊆ S such that |Si| = l. Suppose that each Si intersects at most d other
Si’s. If ce(d + 1) ≤ 2l−1 for some constant c > 1, then we can find a two-coloring of S such that each
Si is not monochromatic within O(poly(m, l)) time.

We will devote the rest of this section to the proof of this theorem. We will start by defining the log of
execution and witness trees.

Definition 9 The log of execution is defined to be (1, Si1), (2, Si2), . . . where Sij is the set that gets
resampled at the jth round of the algorithm.

Figure 1 illustrates how the Moser-Tardos Algorithm works, together with its associated log of execution.

Definition 10 A witness tree for step j > 0 is constructed as follows.

1. Start with a rooted tree with only root Sij

2. For each t = j − 1, j − 2, . . . , and 0:

if Sit intersects with at least one of the vertices in the current witness tree, add Sit to the witness
tree by letting its parent be a vertex that intersects Sit with maximum depth. If there are more than
one such vertices, just pick one arbitrarily.

In Figure 2, we show witness trees according to the Moser-Tardos Algorithm shown in Figure 1.

The algorithm’s runtime depends on the log of execution’s length. We will bound the expected value of
this length by bounding the probability that each tree appears as a witness tree of the algorithm.

4.3 Bound on Probability of A Witness Tree

To bound the probability that a particular tree appears as a witness tree of some step j, let us define
the τ -check procedure.

Definition 11 The τ-check procedure is defined as follows:

1. Visit vertices of τ in reversed BFS order (i.e., maximum depth first)

2. Assign a color to each vertex in the corresponding set as done in the algorithm

3. Check whether the set is monochromatic

4. If all the sets tested are monochromatic, then the check is passed. Otherwise, the check is failed.

4



Figure 1: Illustration of The Moser-Tardos Algorithm. The set S consists of ten elements and we
want to two-color S such that each of A,B,C,D and E is not monochromatic. We start with randomly
colored elements as seen in the upper right picture. We then resample monochromatic sets until we find
a valid two-coloring. In this case, the log of execution is (1, B), (2, D), (3, A), (4, C), (5, E), (6, C).

5



Figure 2: Illustration of Possible Witness Trees for j = 1, . . . , 6 for The Moser-Tardos Algorithm in
Figure 1. Note that a witness tree at each step does not need to be unique. For example, when j = 5,
we can connect B to C instead of A and still get a witness tree.

From our definition of the log of execution and witness trees, we know that each set in a witness tree
was resampled in the algorithm. This meant that it was monochromatic right before it was resampled.
As a result, the witness trees will pass τ -check.

Moreover, observe that, first, if two sets have the same depth in a witness tree, they cannot share any
element. This is because, if they shared an element, we would have assigned one of them to be the
parent of the other in the construction of the witness tree.

Secondly, even if two sets of different depths might share elements, by the time that the τ -check checks
for a set, all of the sets with higher depths got resampled. As a result, the event that each set is
monochromatic when tested in τ -check is independent of each other. Thus, we can conclude that, for
each tree τ ,

Pr[τ -check passes] ≤
(

1

2l−1

)|τ |
where |τ | is the number of vertices of the tree.

6



Figure 3: Illustration of Translation from a Witness Tree to a Binary String. Consider the same input
from Figure 1. Suppose that we take our witness tree when j = 4 as illustrated in Figure 2. The graph
here shows the witness tree in ordinary lines and shows other sets that intersect each vertex but not
included in the witness tree with dashed lines. BFS visits C,B and D respectively. As a result, we will
write out the binary string as 1010 0000 0000.

4.4 Bound on Number of Possible Witness Trees of Certain Size

Next, we will bound the number of possible withness trees of certain size with a specified root. The
bound is stated and proved below.

Theorem 12 For each j ∈ [m], the number of possible witness trees of size s rooted at Sj is at most(
s(d+1)
s−1

)
.

Proof For each i ∈ [m], let S
(1)
i , S

(2)
i , . . . , S

(ki)
i be the sets that intersect with Si including itself. From

our hypothesis, we have ki ≤ d+ 1 for all i ∈ [m].

Now, let us consider any witness tree τ of size s. From our construction of witness trees, every parent

and child of a tree must share an element, i.e., Si’s children must be from S
(1)
i , S

(2)
i , . . . , S

(ki)
i . Moreover,

each vertex does not have repeated children because the construction would tell us to put one of the
repeated children to be a child of another to maximize its depth.

Let Sτ1 , . . . , Sτs be the sequence of vertices visited by BFS. If a parent Si has more than one children,

always push the children in the order that they appear in S
(1)
i , S

(2)
i , . . . , S

(ki)
i .

Now, define a binary string b1 . . . bs(d+1) as follows.

bn(d+1)+r =

{
1 if r ≤ kτn+1

and S
(r)
τn+1 is a child of Sτn+1

in τ,

0 otherwise

for all n = 0, . . . , s− 1 and r = 1, . . . , d.

Basically, this binary string tells us which children of each node are included in τ . Figure 3 illustrates
how to translate a witness tree to a binary string.

Clearly, this binary has exactly (s − 1) one’s. Furthermore, it is easy to see that no two witness trees
get mapped to the same binary string. As a result, the number of witness trees is at most the number

7



of binary string of length s(d+ 1) with exactly (s− 1) one’s, which is
(
s(d+1)
s−1

)
.

4.5 Bound on the Expected Length of the Log Execution

In this section, we will combine the results previously derived to prove a bound on the expected length
of the log execution, which in turn gives us a bound on the algorithm’s runtime.

From our definition of the log execution, we can conclude that

length of log execution =
∑
τ

(number of times τ appears as a witness tree)

where the sum on the right runs over all possible rooted trees τ .

It is obvious from the construction that no witness tree appears twice in the tree. Thus, we have

length of log execution =
∑
τ

1τ

where 1τ denote an indicator variable whether τ appears as a witness tree or not. If τ is a witness tree,
1τ is one. Otherwise, it is zero.

As a result, we have

E[length of log execution] = E

[∑
τ

1τ

]
=
∑
τ

E[1τ ]

=
∑
τ

Pr[τ appears as a witness tree]

=

∞∑
s=1

∑
i∈[m]

∑
|τ |=s

τ rooted at Si

Pr[τ appears as a witness tree]

(from subsection 4.3) ≤
∞∑
s=1

∑
i∈[m]

∑
|τ |=s

τ rooted at Si

(
1

2l−1

)s

(from subsection 4.4) ≤
∞∑
s=1

∑
i∈[m]

(
s(d+ 1)

s− 1

)(
1

2l−1

)s

= m

∞∑
s=1

(
s(d+ 1)

s− 1

)(
1

2l−1

)s
(Stirling’s approximation) ≤ m

∞∑
s=1

(e(d+ 1))s
(

1

2l−1

)s
(from our assumption) ≤ m

∞∑
s=1

(
1

c

)s
= O(m).

8



Recall that the length of the log execution equals the number of loops. Since the runtime in each loop
is only O(poly(m, l)) and the expected length of the log execution is O(m), we can conclude that the
expected runtime of this algorithm is O(poly(m, l)) as desired.

References

[Bec91] J. Beck, An algorithmic approach to the Lovsz local lemma. In I. Random Struct. Alg., 2, pages
343 - 365, 1991.

[CGH10] K. Chandrasekaran, N. Goyal and B. Haeupler, Deterministic Algorithms for the Lovász Local
Lemma. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 992 - 1004, 2010.

[EL75] P. Erdõs and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related
questions. In Infinite and Finite Sets. (Colloquia Math. Soc. Jnos Bolyai), 10, pages 609 - 627, 1975.

[Mos09] R. A. Moser, A Constructive Proof of the Lovász Local Lemma. In Proceedings of the Forty-first
Annual ACM Symposium on Theory of Computing, pages 343 - 350, 2009.

[MT10] R. A. Moser and G. Tardos, A constructive proof of the general lovsz local lemma. In J. ACM,
57(2), pages 1 - 15, 2010.

[Spe77] J. Spencer, Asymptotic lower bounds for Ramsey functions. In Discrete Mathematics, 10, pages
69 - 76, 1977.

9


