
6.842 Randomness and Computation February 12, 2014

Lecture 3
Lecturer: Ronitt Rubinfeld Scribe: Sheela Devadas

1 Randomized Complexity Classes

Definition 1 A language L is a subset of {0, 1}∗.

The strings in a language represent ‘yes’ instances of a language. Examples include graphs with a
Hamiltonian cycle , or descriptions of sets with a proper 2-coloring. A language poses a problem in the
sense that determining if a string is in the language is a decision problem.

Definition 2 P is a class of languages L with polynomial time deterministic algorithms A such that
x ∈ L→ A(x) accepts and x /∈ L→ A(x) rejects.

The algorithm A decides whether x is in the language L or not - it solves the problem posed by the
language.

Definition 3 RP is a class of languages L with polynomial time probabilistic algorithms A such that
x ∈ L→ A(x) accepts with probability at least 1/2 and x /∈ L→ A(x) rejects with probability 1.

The algorithm A in this case has one-sided error, since there are no false positives.

Definition 4 BPP is a class of languages L with polynomial time probabilistic algorithms A such that
x ∈ L → A(x) accepts with probability at least 2/3 and if x /∈ L the probability that A(x) accepts is
≤ 1/3.

In this case we have two-sided error, since we have both false positives and false negatives as pos-
sibilities. 2/3 and 1/3 are arbitrary; they just need to be bounded away from each other and can be
replaced with c1, c2 ∈ [0, 1] with c1 > c2. These constants are arbitrary because we can just repeat the
algorithm A a sufficient number of times and output ‘accept’ if A ever outputs ‘accept’. If we want the
probability of error to be β, we need to repeat A log 1

β times. By Chernoff bounds, if we repeat Θ(log 1
β)

times, the probability that the majority answer is correct is ≥ 1− β. (Effectively Chernoff bounds show
that the probability of error goes down exponentially with the number of times you repeat.)

It’s clear that P ⊆ RP ⊆ BPP. One open question is if P is equal to BPP, which is one of the themes
of the course. Primality testing was a candidate for showing that P and BPP were unequal; however a
deterministic algorithm was found ([1]).

2 Derandomization Via Enumeration

The question is whether algorithms really require tossing coins. There are some distributed settings in
which it’s impossible to solve problems without tossing coins, but here we’re just considering the case of
algorithms.

Coins can be simulated by trying all possible coin tosses - this is enumeration - but this results in a
loss of efficiency in many cases.

Given a probabilistic algorithm A and input x, we run A on every possible random string of length
r(n) - r(n) is the number of random bits used by A on inputs of size n. We note that r(n) ≤ tA(n)
where tA(n) is a runtime bound on A (since it takes at least one step to access a random bit). We then
output the majority answer. Our runtime is O(2r(n)tA(n)), since we run the algorithm A 2r(n) times.

If x ∈ L, then at least 2/3 of the random strings will cause A to accept, so in that case our algorithm
gives the correct answer. If x is not in the language L, then at least 2/3 of the random strings will cause
A to reject, so our algorithm will also reject, which is the correct answer.

1

Therefore we see that coin tosses do not allow us to solve problems that cannot be solved determin-

istically. We also note that BPP ⊆ EXP, where EXP is DTIME(
⋃
C 2n

C

).
We note that if we have an algorithm only using logarithmically many random bits, that our deran-

domized algorithm actually runs in polynomial time.

3 Pairwise Independence and Randomness

3.1 Randomized Algorithm for Max Cut

We consider a randomized algorithm for max cut. Given a graph G = (V,E), the goal is to output a
partition of the vertices into S, T to maximize the number of edges crossing the cut - the number of
edges (u, v) such that u ∈ S, v ∈ T , which is the size of the S, T -cut. When the graph is bipartite, it
is possible for the size of the cut to be equal to the number of edges in the graph. This is an NP-hard
problem in general.

The randomized algorithm works as follows. We flip n coins, r1, . . . , rn, and we put vertex i in S if
ri = 0 and in T if ri = 1.

Theorem 5 The expected size of the random cut produced by this algorithm is |E| /2.

Proof Let 1u,v = 1 if (u, v) crosses the cut - meaning that ru 6= rv - and 0 otherwise (if ru = rv).
The size of our cut is

∑
(u,v)∈E 1u,v. Then the expected size of our cut is just E[

∑
(u,v)∈E 1u,v] =∑

(u,v)∈E E[1u,v] by linearity of expectation; we then use the fact that the expected value of an indicator

variable is the probability that it is 1, so the expected size of our cut is
∑

(u,v)∈E Pr[1u,v = 1] =∑
(u,v)∈E Pr[ru 6= rv] =

∑
(u,v)∈E Pr[ru = 1, rv = 0 or ru = 0, rv = 1]. Since the two events ru =

1, rv = 0 and ru = 0, rv = 1 are disjoint, the probability that one or the other happens is the sum of
the probabilities, which is 1/4 + 1/4 = 1/2. The probability of each event we calcuate based on the fact
that ru, rv are independent. Then the expected size of our cut is

∑
(u,v)∈E 1/2 = |E| /2.

3.2 Using Pairwise Independence

Recall we relied on the coin tosses for ru, rv being independent. They are pairwise independent; however,
we did not need a guarantee of independence beyond pairwise independence.

If we could generate pairwise independent random variables using less randomness than it takes
to generate completely independent random variables, then our derandomization (using the method
described in the previous section) could be more efficient.

We pick n values x1, . . . , xN with xi ∈ T with |T | = t. For any b ∈ T , the probability that xi = b is
1/t for all i - we are assuming uniform distribution.

Definition 6 We call the xi “independent” if for any string b1, . . . , bn ∈ Tn, the probability that
x1, . . . , xn = b1, . . . , bn is 1/tn. We call the xi “pairwise independent” if for any i 6= j and bi, bj ∈ T 2,
the probability that xi, xj = bi, bj is 1/t2. We call the xi “k-wise independent” if for any i1, . . . , ik and
bi1 , . . . , bik ∈ T 2, the probability that xi1 , . . . , xik = bi1 , . . . , bik is 1/tk.

We note that in the previous proof, we only used pairwise independence rather than general inde-
pendence. In a full enumeration for the max cut algorithm, we would have to try all possible coin tosses
(all possible cuts) and then pick the best one. While this gets you the very best cut, it’s not efficient.

Instead we consider a partial enumeration: we pick a subset of coin tosses that is not as large as the
full set but still satisfies the pairwise independence property. We then enumerate on this subset.

Consider the following sets of three coin tosses:

2

r1 r2 r3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

It’s clear that our random bits here are completely independent since this is all the possible sets
of three coin tosses. However, if we consider the following sets of three coin tosses instead, in which
r1 ⊕ r2 = r3:

r1 r2 r3
0 0 0
0 1 1
1 0 1
1 1 0

we do in fact have pairwise independence but obviously not general independence since given two
bits we can always determine the third.

What we want is to take a few truly random or totally independent bits - b1, . . . , bm and put them
into a randomness generator to generate pairwise independent bits r1, . . . , rn. The question is then how
much bigger than m can we make n? (Previously we just had the case m = 2, n = 3).

We are going to enumerate over all of the bi, which we call the ‘seeds’, and use them to pick a random
row from the ‘randomness generator’, and generate r1, . . . , rn for the algorithm. If we derandomize in
this way, our running time is then O(2mTA(n)), which could be in polynomial time if m is logarithmic.

We assume we have a ‘randomness generator’ taking O(log n) truly random bits and producing n
random bits.

First, we make a new randomized max cut algorithm, MC ′. It uses fewer random bits and runs as
follows: we pick log n+1 truly random bits b1, . . . , blogn+1 and use the generator to construct n pairwise
independent random bits r1, . . . , rn. We then use the ri in the max cut algorithm described earlier and
evaluate the size of the cut.

We now describe a deterministic, derandomized max cut algorithm. For all choices of b1, . . . , blogn+1,
we run MC ′ and evaluate the cut size, and output the best size found.

This is not necessarily the best cut possible, but we wish to show that we get a fairly good approxi-
mation. The runtime is 2logn+1×tMC′(n), where tMC′(n) includes the time it takes to run the generator
and the time to run the actual max cut algorithm. Our previous analysis shows that at least one of our
random cuts must be fairly good (≥ |E| /2), so the final output of our algorithm must be fairly good
too.

3.3 Generating Pairwise Independent Bits

We consider a construction of the randomness generator. We choose k truly random bits b1, . . . , bk, and
for every subset S ⊆ [k] such that S 6= ∅, we let cs =

⊕
i∈S bi, and we output all the cs. Proving that

these are all pairwise independent is a homework exercise.
We had k bits that are truly random, and we output 2k − 1 pairwise independent random bits.
We consider another construction of the randomness generator. We wish to generate random integers

in [0, . . . , q − 1], where q is prime.
A trivial method that works when q = 2l (here q is not prime) is to just repeat the previous

construction for each position in 1 . . . l: that is, if we wish to produce n pairwise independent random
integers, we construct l sets of n pairwise independent bits; the first bit of each of the integers is from

3

the first set of n bits generated, the second bit of each integer from the second set of bits, and so on.
This construction uses O(log n log q) = O(l log n) truly random bits.

A better construction, for q prime, uses O(log q) bits when n ≈ q. Specifically it uses 2 log q random
bits to yield q pairwise independent elements of the field Zq. We pick a, b ∈ Zq. We let ri = ai + b
mod q for all i in 0, . . . , q − 1 and we output r1, . . . , rq. It’s useful to think of this as a function ha,b
from [0, . . . , q − 1] to Zq. We now have a family of functions H = {h1, h2 . . . } for hi : [N] → [M] that
is pairwise independent in the sense that for all x in the domain, H(x) is uniformly distributed in [M]
(H(x) ∈u [M]) and for any x1 6= x2 ∈ [N], H(x1) and H(x2) are independent.

Our family is H = {ha,b : Zq → Zq}. For any x 6= w, the probability that ha,b(x) = c and ha,b(w) = d
is 1/q2, since only one choice of a, b is a solution to ax+ b = c and aw+ b = d. Effectively we are trying
to solve the matrix equation (x 1

w 1) (ab) = (cd), which has a unique solution for (ab) because (x 1
w 1) is

invertible; its determinant is x− w 6= 0.
To generalize to k-wise independence, we can use polynomial equations instead of linear ones - for

example, for 3-wise independence, we could use functions of the form ha,b,c(x) = ax2 + bx+c mod q. We
can use a similar argument with a matrix equation to prove that these functions are 3-wise independent,

though it is more difficult to prove that the necessary matrix (for example,

(
x2 x 1
w2 w 1
z2 z 1

)
) is invertible in

this case.

References

[1] Manindra Agrawal, Neeraj Kayal, Nitin Saxena, PRIMES is in P. In Annals of Mathematics, 160(2),
pages 781-793, 2004.

4

