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Topics

• More random walks

• Cover time for graphs

• UST-Conn ∈ RL

1 Review

In the previous lecture, we talked about theorems related to Markov chains and cover time for graphs.
Here is a review about topics from the last class.

Given initial distribution Π0 = (Π0
1,Π

0
2, . . . ,Π

0
n), where Π0

i = Pr[start at node i], we have t-step distri-
bution being just a matrix multiplication Πt = Π0P t.

Definition 1 An ergordic Markov chain is a Markov chain with transition matrix P such that ∃t0∀t >
t0,∀x, y, P t(x, y) > 0.

Theorem 1 If a Markov chain M is ergodic, then M has a unique stationary distribution.

Theorem 2 The stationary distribution of any doubly stochastic and ergodic Markov chain is uniform.

Definition 2 The hitting time hij of a graph G is the expected number of steps for a random walk
on G that starts at node i and reaches node j.

Definition 3 The return time hii of a graph G is the expected number of steps for a random walk on
G that starts at node i and returns to node i.

Theorem 3 If a random walk is ergodic, then hii = 1
Πi

, where Π is the stationary distribution.

Definition 4 The cover time Cu(G) of a graph G at node u is the expected number of steps of
a random walk that starts at u and hits every node in G. C(G) is the maximum cover time, i.e.,
C(G) = maxu∈V Cu(G).

Definition 5 The commute time cij is the expected number of steps of a random walk that starts at
i, hits j and comes back to i.

Fact 1 cij = hij + hji.

Theorem 4 Let G be a connected graph with m edges and n nodes, then C(G) is O(mn).

Lemma 1 For any edge (u, v) ∈ E, cuv ≤ O(m).

We have already shown that the above lemma implies Theorem 4. In this lecture, we will prove the
lemma.
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2 Bound for cover time

We will start by proving the following lemma.

Lemma 1 For any edge (u, v) ∈ E, cuv ≤ O(m).

Proof. The key idea of this proof is that instead of looking at how we traverse the nodes, we look at how
we traverse the edges. If we traverse edge (u, v) twice, then we must have traveled from u to v and back
to u, hence a commute. Therefore, if we are able to show that the expected number of steps between
visits to (u, v) is O(m), then cuv must also be O(m).

First, create an undirected graph G′ from G by adding d(u) self-loops to each node u. Each node in
G′ stays in place with probability 1

2 and walk according to G with probability 1
2 . Next, we claim that

C(G′) = 2C(G), because we can transform any path in G′ to a path in G by removing self-loops and
the expected number of self-loops is exactly half of the length of the path.

Next, we construct a directed graph G′′ that represents walks on directed edges of G′. The set of vertices
V ′′ is the set of edges E′ in both directions in G′ except self-loops. For example, edge (1, 2) in E′ becomes
vertices (1, 2) and (2, 1) in G′′. The set of edges E′′ is the set of paths of length two in G′.

Here is the example of G,G′ and G′′. Suppose P is the transition matrix of G and

P =
1 2

1 0 1
2 1 0

Then we have

P ′ =
1 2

1 1
2

1
2

2 1
2

1
2

and

P ′′ =

(1, 1) (1, 2) (2, 1) (2, 2)
(1, 1) 1

2
1
2 0 0

(1, 2) 0 0 1
2

1
2

(2, 1) 1
2

1
2 0 0

(2, 2) 0 0 1
2

1
2
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Figure 1: Illustration of how to construct G′ and G′′ from a graph G.

Now we will show that G′′ must be doubly stochastic. Let P ′ be the transition matrix for G′. Consider
the transition matrix Q of G′′, we have

Q(u,v)(z,w) =

{
P ′
vw if z = v and (u, v), (v, w) ∈ E′

0 otherwise.

Therefore, ∀(v, w) ∈ E′, the column sum of Q is∑
(u,v) s.t.

(u,v)(v,w)∈E′

Q(u,v)(v,w) =
∑

(u,v)∈E′

1

d(v)
= 1.

We can conclude that G′′ is doubly stochastic. Also, note that G′′ is ergodic, and we will outline its
proof here: G′′ is ergodic if and only if G′′ is irreducible and aperiodic from a theorem last time. G′′ is
irreducible because G′ is irreducible. G′′ is aperiodic because of self-loops in G′. These two properties
of G′′ imply that the stationary distribution Π(G′′) is uniform from theorem 2.

Since there are at most 4m nodes in G′′, we can conclude that

Πu∈G′′G′′ ≥ 1

4m
.

Therefore, for any node (u, v) in G′′, we have h(u,v)(u,v) ≤ 4m from theorem 3, which concludes the
proof. �

3 The Undirected Connectivity Problem (UST-Conn)

We can use the properties of random walk that we just showed to check whether an undirected graph is
connected. In this section, we will consider the uniredted connectivity problem.
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Definition 6 The undirected connectivity problem (UST-Conn) is to decide whether nodes s, t
of an undirected graph G are in the same component.

Definition 7 The complexity class RL is the class of problems solvable in logarithmic-space with
probabilistic Turing machines with one-sided error.

Theorem 5 UST-Conn ∈ RL.

Proof. We consider the following algorithm:

1. Start at node s.

2. Take a random walk for cn3 steps (c will be specified later).

3. If ever see t output “yes”. Otherwise, output “no”.

Next, we will analyze the correctness of this algorithm.

If s, t are not connected, the algorithm will never always output “no”.
If s, t are connected, let Gs be connected component of s in G, from theorem 4 we have

hst ≤ C(Gs) ≤ c′nm.

Pick c = 4c′, then Pr[output “no”] = Pr[start at s, walk more that 4hst steps and don’t reach t] ≤ 1
4 by

Markov’s inequality. Therefore, we have a one-sided error randomized algorithm.

Since we only need to keep track of the number of nodes we have visited so far, we only use logarithmic
space. Therefore, UST-Conn is in RL. �

So far we have shown that UST-Conn is in L and that RL ⊆ L3/2, the class of problems solvable in
(log n)3/2 space. However, it is still open whether RL = L.
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