
6.842 Randomness and Computation April 2, 2014

Lecture 15
Lecturer: Ronitt Rubinfeld Scribe: Luis Filipe Voloch

1 Introduction

In this lecture we will go an algorithm for solving the following problem.

• Input: A binary function f : {−1, 1}n 7→ {−1, 1} and a promise that there exists an S∗ ⊂ {1, ..., n}
such that f̂(S∗) > 0.5 + ε.

• Output A list L of subsets of {1, ...n} such that:

1. For all S ⊂ {1, ...n} such that f̂(S) > 0.5 + ε, S ∈ L, and

2. If S ∈ L, then f̂(S) > 0.5 + ε/2.

• Requirements: The algorithm must run in poly(n, 1/ε).

In order to get a feel for the problem, we will first cover two special cases. We will then provide an
algorithm and a proof of correctness for the general case. Finally, we will note work done in a similar
versions of the problem.

1.1 Historical Perspective

This question was first studied by Oded Goldreich and Leonid Levin [3] in the context of one-way-
functions in Cryptography, and the algorithm presented in Section 4 is due to them.

2 Warm-up 1: (ε = 1/2)

Let us first consider the case in which we have additional information about the Fourier concentration:
that ε is 1/2. This means f̂(S∗) = 1, which is equivalent to the case in which f is exactly a parity
functions (f = χS for some S), and we must just find out exactly which indices i we should include in
S. We can do so by checking by the following procedure. For each i ∈ {1, ...n}:

• if f(1) 6= f(ei), then include i in S,

• if f(1) = f(ei), then do not include i in S.

Also, since we are doing only n+ 1 queries to the function, this works in θ(n) ∈ poly(n, 1/ε). Note, that
since f is a parity function, there are no other S ∈ {1, ..., n} that we should have outputted, since their

Fourier coefficients are all f̂(S) = 0 < 1/2 + ε/2 = 3/4.

1

3 Warm-up 2: (ε > 1/4)

Let us now consider the case in which ε = 1/4 + δ, for δ > 0.

3.1 Algorithm

Consider the following algorithm: sample si ∈R {−1, 1}n, where |{si}i| = 5
2n/δ

2. For each index
i ∈ {1, ..., n}:

• if, for the majority of the samples st, we have f(st) 6= χS(st) or f(stei) 6= χS(stei), then do not
include i in S,

• otherwise include i in S.

3.2 Proof of Correctness

Lemma 1 Consider the majority vote scheme described above. Then probability that the majority of the
samples disagree with χS is less than 1/(10n).

Proof Let Zj = 1{f(sj) 6= χS(sj) or f(sjei) 6= χS(sjei)}. Then, using the union bound, we have
EZj ≤ P{f(sj) 6= χS(sj)} + P{f(sjei) 6= χS(sjei)} = 1

2 − 2δ. In addition, since all Zj are indicator
random variables, we have var(Zj)) ≤ 1.

Now denote Z =
∑T
j=1 Zj . Then E[Z] =

∑T
j=1 E[Zj] ≤ T (1

2 − 2δ) and var(Z) =
∑T
j=1 var(Zj) ≤ T .

We are now equipped to use Chebyshev inequality, where we get

P(Z ≥ T/2) ≤ P(|Z − E(Z)| ≥ 2tδ) ≤ var(Z)

(2tδ)2
≤ t

(2tδ)2
=

1

10n
,

as desired.

Theorem 2 The probability that any of the samples give is wrong is is less than 1/10.

Proof The Ai be the event that the we have included i incorrectly in the output S. Then we have

P(error) = P(∪ni=1Ai),

where we can use the union bound and the Lemma above to get

n∑
i=1

P(Ai) =
n

10n
= 1/10.

Also note regarding the running time: for each of i ∈ {1, ..., n} we make T = θ(n/δ2) queries. Hence the
running time is θ(nT) = θ

(
(n/δ)2

)
which is poly(n, 1/ε).

2

3.3 Note on an improvement

Note that in this case we could have just used the Chernoff bound instead of Chebyshev, since we are
just dealing with a sum of Bernoulli random variables. This in turn would allow us to be have T be just
T = θ(log(n)/δ2). However, since in the following section we will Chebyshev, we decided to include that
argument in this section.

4 General Case: (ε > 0)

Note that the analysis done in the previous section breaks down if we have ε ≤ 1/4. In particular, where
we take the union bound over the two events P{f(sj) 6= χS(sj)}+ P{f(sjei) 6= χS(sjei)} ≤ 1/2, which
is of no use for our majority procedure.

Our fix to that is to choose the vectors r1, ..., rT in a more clever way. In particular, instead of choosing
them randomly as before, we will now pick them to be pairwise independent. We will do so by picking
s1, ..., sk ∈ {−1, 1}n, for k = log(T +1). These vectors will in turn generate a subspace of 2k ≈ T strings,
where T = 2n/ε2.

4.1 Algorithm

We will modify our algorithm from the section above by selecting fewer samples our samples more
cleverly.

Algorithm

• Choose t = 2n/ε2, and k = log(t).

• Choose vectors s1, ..., sk ∈ {−1, 1}n

• For each of the 2k ≈ t assignments (σ1, ...σk) ∈ {−1, 1}k (think of them as guesses to the values of
χS(x)):

– For every W ⊂ {1, ...,K}
– set rW =

⊕
j∈W sj , and pW =

∏
j∈W γk

– For all i ∈ {1, ..., n}, put i in Sσ1,...,σk
if for the majority of pW we have pW 6= f(rw

⊙
ei)

– Test if Sσ1,...,σk
to check if more than 1

2 + 3
4ε agrees with f on the majority of the output,

and return Sσ1,...,σk
only if so.

This generates many candidates for S. At the end, we can filter out the bad ones by testing if they
agree with f on more than 1

2 + 3
4ε, and we will show that this filtering works via an analysis by Chernoff

bound (Lemma 3).

4.2 Proof of Correctness

Lemma 3 With high probability we can filter out all the members of the list S that agree with f on less
than 1

2 + 1
2ε of the inputs.

3

Proof Consider the test in which we sample k random inputs x1, ...xk ∈ {−1, 1, }n, and we filter out
a candidate S if χS agrees with f on less than 1

2 + 3
4ε of these k values. Let As be the event that S

(with f̂(S) ≤ ε/2) agrees with f on more than 1
2 + 3ε

4 fraction of the k inputs. Then by Chernoff bound
we get

P(AS) ≤ exp

(
−(

1

4
)2k/2

)
= exp (−θ(k)) .

Now recall that there are less than 1/ε2 candidate S in our list. Hence if we pick k = log(n/ε2) we get

P(∪SAs) ≤
∑
S

P(AS) ≤ 1

ε2
exp (−θ(k)) = θ(

1

ε2
ε2

n
)→ 0.

Furthermore, note that picking k = θ(log(n/ε2)) does not hurt us on the overall requirement on time
complexity of the algorithm, which is still poly(n, 1/ε).

We will use an argument very similar to that of Lemma 1.

Theorem 4 The algorithm above works with probability greater than 1/2.

Proof Let Xw denote the indicator random variable 1{pwf(rw
⊙
ei(−1)1{i∈S}}. Then we see that

the probability that the algorithm generates S when considering the guesses Sσ1,...,σk
is exactly E[Xw].

We will bound the probability of error by considering the mean and variance of this indicator random
variable, and then using Chebyshev’s inequality.

Its expectation is EXw ≥ 1
2 + ε, and the variance is σ2

w = E[X2
w]− E[Xw]2 ≥ 1

2 + ε− (1
2 + ε)2 = 1

4 − ε
2.

Hence we can now apply the argument as in we did in Lemma 1. The analogous Lemma for here is:

P(
∑
w

Xw <
t

2
) ≤

(1
2)2 − ε2

tε2
≤ 1

tε2
≤ 1

2n
.

We can now use the union bound and we get that

P(error) < n
1

2n
=

1

2
,

as we wished. As our last step, by Lemma 3, we can with high probability filter all of the S that do not
belong in the output.

5 Further Remarks

This question has also been studied in the context of random examples (as opposed to queries, as we
did). In this case, Blum, Kannai, Wasserman provided the best known algorithm, with sub-exponential
running time ofO(2n/ logn), in 2003 [1], where they used 2n/ logn examples. In 2005, Vadim Lyubashevsky
showed a different result [4], where the running time is worse, but requires substantially many examples.
In particular, he showed that one can learn in time O(2n/ log logn) (which is worse than the 2003 result),
but using only poly(n) examples (which is better than the 2003 result). This question has also been
studied under adversarial noise. In this case, the best known algorithm runs in O(2n/ logn) and is due
to Feldman, Golapan, Khot, and Ponnuswami in 2006 [2].

4

References

[1] Avrim Blum, Adam Kalai, and Hal Wasserman, “Noise-tolerant learning, the parity problem, and
the statistical query model,” JACM., vol. 50, iss. 4 2003 pp. 506-519.

[2] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Ponnuswami, “New Results for Learn-
ing Noisy Parities and Halfspaces,” FOCS 2006.

[3] Oded Goldreich, Leonid Levin. “A Hardcore Predicate for All One-Way Function,” Proceedings of
STOC, 1989.

[4] Vadim Lyubashevsky, “The parity problem in the presence of noise, decoding random linear codes,
and the subset sum problem,” APPROX’05/RANDOM’05.

5

