
6.842 Randomness and Computation April 9th and 14th, 2014

Lecture 17 and 18
Lecturer: Ronitt Rubinfeld Scribe: Zeyuan Allen-Zhu

The goal of these two lectures are to study boosting, a general technique that turns a distribution-free
weak learner into a strong learner.

Definition 1 An algorithm A weakly PAC learns a concept class C (with confidence δ > 0 and error
γ > 0) if for all f ∈ C and for all distribution D, with probability at least 1− δ and given samples from
f , A outputs some c satisfying

Pr
D

[f(x) 6= c(x)] ≤ 1

2
− γ

2
.

We emphasize here that the weak learning algorithm A does not know the distribution D. It only sees
samples from D. The time and sampling complexity of A usually depends on δ and γ. The definition
of weak learner is different from the normal but strong version of PAC learning in terms of the error
guarantee: the strong version requires that for any ε > 0, the error PrD[f(x) 6= c(x)] can be made as
small as ε.

(Recall that we have learned from the previous lecture on how to obtain a weak leaner for monotone
functions, but only when the distribution is uniform. If that weak leaner worked for all distributions
(i.e., is distribution-free), it would imply that monotone functions can be PAC learned in the strong
sense, contradicting to the impossibility result.)

1 Thought Experiments

We begin with some intuitive trials on how to turn a (distribution-free) weak leaner into a strong one.
The first (and very bad) trial is to run the weak leaner multiple times on the same distribution D,

and output for instance the majority of the predictions. This approach fails very miserably because
typically in learning, repetition can only improve the confidence δ (see for instance Homework 7-3), but
not the prediction accuracy. A simple example to illustrate this phenomenon is to consider some weak
learner that always outputs the same prediction c no matter how many times it is run. In such a case,
the majority of the same function c is still c itself, and therefore the prediction accuracy is not improved
at all.

The second (and very promising) trial is to always run a weak learner on the samples where the
previous learners fail to predict. More specifically, suppose that from distribution D the weak learner
A obtains some prediction c1(x) (from samples (x1, f(x1)), (x2, f(x2)), . . . (xm, f(xm)) if m samples are
needed in A). Next, we query D for more examples (xm+1, f(xm+1)), . . ., but only focus on those xi
such that c1(xi) 6= f(xi). In other words, we use c1(x) to filter out the successfully predicted samples,
and only focus on the rest. This gives rise to a different distribution D1, and we can pass it to the weak
learner A to produce a second prediction c2(x). This process can go on for a number of stages.

The second trial looks very promising, because it uses the distribution-free feature of the weak leaner
A, and always refines on the samples that are mistakenly predicted. However, a fundamental problem
exists: how do we, in the end of the algorithm, combine the sequence of predictions c1(x), c2(x), . . . ?
For instance, given some new sample x and suppose we want to predict the unknown label f(x), how
do we choose from the answers of c1(x), c2(x), . . . ? The filtering techniques allows us to choose the
cj(x) among all possible j only after seeing the ground-truth label f(x), so for new and to-be-predicted
samples, the filtering no longer helps.

In this lecture, we are going to study the boosting algorithm that is essentially built from the second
trial above. In fact, it chooses the majority of c1(x), c2(x), . . . as the final output (of the strong leaner),
but changes the definition of filtering to ensure the correctness.

(One may ask if there are indeed example of concept classes where it is easy to design weaker learners
but hard to design for strong ones. In fact, it is not clear if such examples exist so the final theorem

1

of the boosting algorithm turns out to be a theoretical result. However, the strong learner of DNF was
indeed introduced using boosting by Jackson: he uses weak learners that are not distribution-free, but
work for a sufficiently large class of distributions that is sufficient for the boosting of DNF. Also, variants
of boosting have found numerous applications in practical problems such as character recognitions.)

2 The Boosting Framework

Pick δ to be smaller than 1/T where T is the number of the phases, and suppose we are given samples
from D that are labelled according to f .

• Stage 0: initialization. D0 ← D. Run the weak learner on D0 to generate c1(x) satisfying
PrD0

[f(x) = c1(x)] ≥ 1
2 + γ

2 .

• For stage i← 1 to T = O(1/γ2ε2).

– Stop the algorithm if Maj(c1, c2, . . . , ci) is correct on 1− ε fraction of the inputs with respect
to D, and output the function Maj(x1, . . . , ci) as the final prediction.

(This step can be done by taking O(1/ε) samples from D and checking how many of them fail
the test on f(x) = Maj(c1(x), . . . , ci(x)).)

– Construct Di via some “filtering procedure”.

(This will be introduced in the next section, but from a high level, Di is constructed from D
by favoring samples where the previous predictions are incorrect. It will be constructed in a
probabilistic way based on how many previous predictions are correct.)

– Run the weak leaner with distributionDi and get a new function ci+1(x) satisfying PrDi
[f(x) =

ci+1(x)] ≥ 1
2 + γ

2 .

• If the algorithm does not stop in T stages, output C = Maj(c1, . . . , cT).

(Our theorem ensures that the algorithm will never reach here, at least with reasonable probability.)

3 The Specific Choice of Filtering Procedure

At stage i of the algorithm, given predictions c1, . . . , ci from stage 0 through stage i − 1, we construct
Di as follows. Given a sample (x, f(x)) from D, we compare Maj(c1(x), . . . , ci(x)) and f(x).

• If Maj(c1(x), . . . , ci(x)) 6= f(x), we keep this sample.

• Otherwise, letting #right be the number of correct predictions among c1(x), . . . , ci(x), and #wrong
be the number of incorrect predictions (so we have #right+ #wrong = i).

If a large majority is correct —that is, #right−#wrong > 1
γε (which is equivalent to #wrong ≤

i
2 −

1
2γε)— we discard this sample.

• If #right−#wrong = α
γε <

1
γε for some α ∈ [0, 1], we keep this sample with probability 1− α.

This above random procedure (of generating samples) gives the definition of Di. Note that when i is
small, the threshold i

2 −
1

2γε is negative so nearly all samples from D are kept, and in other words,
Di ≈ D for small i.

As another remark, in principle, we need to make sure that the weak learner receives enough samples
in each stage i; or in other words, the sampling complexity does not blow up from weak to strong learner.
This is true because, at stage i, the non-stopping criterion PrD[Maj(c1(x), . . . , ci(x)) = f(x)] < 1 − ε
ensures that we only need ≤ 1

ε samples from D in order to generate a sample from Di.

2

4 Sketched Proof of the Correctness

We mostly only introduce some notations here, and the full proof will be given in the next lecture. Let
Rc(x) capture the correctness of a prediction c at input x:

Rc(x) :=

{
+1, if f(x) = c(x);
−1, otherwise.

Let Ni(x) indicate “#correct−#wrong” for the first i ≥ 0 predictions

Ni(x) :=
∑

1≤j≤i

Rcj (x) ,

and let Ni(x) = 0 for i = 0. For any i ≥ 0, we also denote by

Mi(x) :=

+1, if Ni(x) ≤ 0;
0, if Ni(x) ≥ 1

γε ;

1− εγ ·Ni(x), otherwise.

so that the distribution DMi
(x) := Mi(x)∑

x
Mi(x)

coincides with our distribution Di. We emphasize again

that this distribution D includes all incorrectly predicted x plus some others.
We define also the advantage of a prediction c(x) over Mi as

Advc(Mi) :=
∑
x

Rc(x) ·Mi(x) .

It is clear from the definition that Prx∈DMi
[c(x) = f(x)] = 1

2 + Advc(Mi)

2
∑

x
Mi(x)

. Note that, by the definition

of the weak learner, we have that the special choice of c = ci+1 makes sure that Prx∈DMi
[c(x) = f(x)] ≥

1
2 + γ

2 , and therefore Advc(Mi)∑
x
Mi(x)

≥ γ for c = ci+1.

(We do not have enough time to continue the proof in Lecture 17, so the following texts provide a
sketch of the proof.) We should always have

∑
xMi(x) ≥ ε2n if the algorithm does not stop. This gives

a lower bound on
∑
xRci+1(x) ·Mi(x) = Advci+1(Mi) ≥ γε2n. On the other hand, for any fixed input

x, letting Ai(x) :=
∑

0≤j≤i−1Rcj+1(x) ·Mj(x), we should have Ai(x) ≤ 1
εγ + εγ

2 · i. (This is because, if

Rcj+1(x) keeps being large for a few iterations j, then Mi(x) drops very quickly by the definition.)
At last, we combine the upper and lower bounds, deduce a contradiction and therefore proving that

the algorithm must terminate in T stages. Let us make this proof rigorous in the next section (which is
covered in Lecture 18).

5 The Full Proof

Notice that
∑
xMi(x) captures the total measure of the space of {−1, 1}n that the next leaner (at

stage i + 1) is trying to learn. If
∑
xMi(x) < ε2n, the algorithm would have stopped. This is be-

cause, according to the definition, 1
2n

∑
xMi(x) upper bounds the fraction of the inputs x such that

Maj(c1(x), c2(x), . . . , ci(x)) 6= f(x). Therefore, we can safely assume that
∑
xMi(x) ≥ ε2n for all

i ∈ {0, 1, . . . , T}; this gives a lower bound on the advantage∑
x

Rci+1
(x) ·Mi(x) = Advci+1

(Mi) ≥ γε2n .

For any fixed input x, letting Ai(x) :=
∑

0≤j≤i−1Rcj+1
(x) ·Mj(x), we claim that

3

Claim 2 Ai(x) ≤ 1
εγ + εγ

2 · i.

Let us first see how this claim implies our boosting theorem. Consider a matrix where the 2n rows
are all possible x’s, and the columns are 0, 1, . . . , i, representing iterations. At the x-the row and the
j-th column of the matrix, we put Rcj+1

(x) ·Mj(x).
The sum of the x-th row of this matrix is Ai+1(x). Therefore, owing to Claim 2, this gives an upper

bound on the summation of all the entries of the matrix ≤ 2n
(

1
εγ + εγ

2 · (i+ 1)
)
.

On the other hand, the sum of j-th column of this matrix is
∑
xRcj+1(x)Mj(x) = Advcj+1(Mj) ≥

γε2n. This gives a lower bound on the summation of all the entries of the matrix ≥ γε2n · (i+ 1).
Together, we must have 2n

(
1
εγ + εγ

2 · (i + 1)
)
≥ γε2n · (i + 1), which implies that i ≤ 2

ε2γ2 − 1, and

therefore the algorithm must terminate in T = O(1
ε2γ2) stages.

At last, we only need to prove the claim.

Proof [Proof of Claim 2] We will use an “elevator argument”: in an elevator that starts from the first
floor (and may have negative floors), no matter which floors we have visited, the number of times we
ascend from floor k to k + 1 is at most one more time than we descend from floor k + 1 to k. This is
also true for negative floors.

The proof of this elevator argument is very simple: for each pair of floors, say k and k + 1, we can
match each time we go up from k to k + 1, to the most recent time we go down from k + 1 to k. Then,
for each pair of consecutive floors k − (k + 1), there is at most one extra “up” (if k > 0) or “down” (if
k ≤ 0) that is left unmatched.

Now we go back to upper bound Ai(x) :=
∑

0≤j≤i−1Rcj+1(x) ·Mj(x). In this summation, there
are i terms j = 0, 1, . . . , i − 1. For each (possibly negative) k, we match any a = j satisfying Nj(x) =
k,Nj+1(x) = k+1 (therefore is “going up”), to its neighboring b = j′ satisfyingNj′(x) = k+1, Nj′+1(x) =
k (therefore is “going down”).

For any matched pair a, b ∈ {0, 1, . . . , i− 1}, the two corresponding terms sum up to

Rca+1
(x)Ma(x) +Rcb+1

(x)Mb(x) = +1 ·Ma(x)− 1 ·Mb(x) = Ma(x)−Mb(x) . (1)

This is because, a, by definition, is a “going up” term so we have Rca+1
(x) = Ni+1(x) − Ni(x) = +1,

and similarly Rcb+1
= −1. Next, if k < 0 is negative, we have Ma(x) = Mb(x) = 1 so (1) equals to

zero; if k > 1
γε is large, we have Ma(x) = Mb(x) = 0 so (1) equals to zero; otherwise, Ma(x)−Mb(x) =

(1− εγNa(x))− (1− εγNb(x)) = εγ((−k) + (k + 1)) = εγ. In sum, letting P ⊆ {0, 1, . . . , i− 1} be the
set of pairs that have matched, we have that their summation∑

j∈P
Rcj+1

(x) ·Mj(x) ≤ εγ · |P |
2

= εγ · i
2
.

The unmatched coordinates j ∈ P̄ := {0, 1, . . . , i−1}\P , they must either have all Nj(x)−Nj+1(x) =
−1 being negative (so “going down”), or have all Nj(x)−Nj+1(x) = +1 being positive (so “going up”).
If it is the former “going up” case, the corresponding Rcj+1(x) = −1 is negative but Mj(x) ≥ 0 is always
non-negative. This shows that the total sum

∑
j∈P̄ Rcj+1

(x) ·Mj(x) ≤ 0 is non-negative.
Otherwise, in the latter (so “going down”) case, the corresponding Rcj+1

(x) = 1 is positive. For
those j ∈ P̄ that has Nj(x) ≥ 1

γε , they must satisfy Mj(x) = 0 so do not contribute to the summation;

for those other j ∈ P̄ with Nj(x) ∈ {0, 1, . . . , 1
γε}, they satisfy Mj(x) ≤ 1 so contributing 1 to the

summation. In sum, ∑
j∈P̄

Rcj+1(x) ·Mj(x) ≤ 1

εγ
.

Lastly, we conclude that Ai(x) =
∑

0≤j≤i−1Rcj+1
(x) ·Mj(x) ≤ 1

εγ + εγ · i2 .

4

	Thought Experiments
	The Boosting Framework
	The Specific Choice of Filtering Procedure
	Sketched Proof of the Correctness
	The Full Proof

