
6.842 Randomness and Computation April 23, 2014

Lecture 20
Lecturer: Ronitt Rubinfeld Scribe: Aldo Pacchiano and Luis Voloch

1 Pseudorandomness

The goal of this lecture is to explore the possibility of constructing a scheme whereby a string of m
random bits could be converted into a string of n bits, with n >> m, such that the new string looks
random. The goal is to convert a small source of randomness into a larger stream of ”random looking”
bits. We call this process pseudorandom number generation (PSG):

PSG (n random bits) = m random looking bits.

In this lecture we will try to elucidate what we mean by ”random looking bits”. There are several
candidate notions for the defining the idea of approximately random. We will first go through some of
them and understand why they are not proper definitions, and then we will settle for the definition that
we call computational indistinguishability.

1.1 Candidate Notions:

(a) Kolmogorov Complexity: We could try to quantify the randomness of a string via its Kol-
mogorov complexity. Where a string x is seen as a pair y,M , y being a string and M being a
turing machine such that M(y) = x. The Kolmogorov complexity of x is the minimum length of
its description y,M .

(b) Statistical Distance: We could also try to quantify the randomness of the resulting string via
its statistical distance to uniform. This is the L1 distance between the resulting distribution over
the strings of the output and the uniform distribution. Unfortunately, because a Pseudo Random
Generator is a deterministic machine, the distribution over the output is supported in at most
2n strings, therefore having a statistical distance to the uniform distribution at least as large as
1/2m ∗ (2m − 2n) = 1− 1/2m−n.

(c) k-wise Independence: We could also try to enforce that the output of the PSG be useful for
randomized algorithms, for example, producing strings that are pairwise independence, or k wise
independence. The drawback of the last approach is that these types of distributions do not work
for all randomized algorithms.

2 Computational indistinguishability

In order to fix the problems described by the above approaches, we will require that the PSG produces
a distribution over m bit strings that ”looks random” for all probabilistic polynomial time algorithms.

In synthesis, the notion of PSG is with respect to a class of algorithms. For instance, it could be
that the PSG produces random looking strings with respect to probabilistic polynomial time algorithms
or with respect to constant size circuits.

When we say the resulting strings look random we would like to say they cannot be distinguished
from the uniform distribution by any reasonable computational scheme.

Definition 1 (Computational indistinguishability (C.I.)). Let Xn, Yn be sequences of random variables
on {0, 1}n (the exponent n may be substituted by p(n) for any fixed polynomial p). We say {Xn}, {Yn}
are ε(n) indistinguishable for time t(n) machines (similarly for circuit size t(n)) if for all probabilistic
polynomial time T Turing machines running in time t(n) it follows that:

|P(Xn = 1)− P(Yn = 1)]| ≤ ε(n)

1

for all n large enough.

Note: If we were to hardware the inputs to our circuit T , then this becomes a statistical test for
{Xn} and {Yn}. As expected, a distribution that is computationally indistinguishable to the uniform
distribution can be used as a randomness souurce for BPP and RP algorithms:

Lemma 2. (C.I., BPP, RP) If Xn and Yn are C.I. (where Yn is the uniform distribution) for size t(n)
circuits then we can use Xn and Yn interchangeably for all RP and BPP algorithms A.

Proof. The BPP condition on A implies that: ∀x ∈ {0, 1}n we have that Pr∈Yr(n)
[A(x, r) = 1] ≥ 2

3 or ≤
1
3 . By amplification we can assume A is as follows: ∀x ∈ {0, 1}n we have that Pr∈Yr(n)

[A(x, r) = 1] ≥
3
4 or ≤ 1

4 .
Now we aim to show that for all input x we have that Pr∈Xr(n)

[A(x, r) = 1] ≥ 2
3 or ≤ 1

3 . We will do
so by contradiction. If the last was not true, then, there would be a family of inputs an ∈ {0, 1}n such
that for infinitely many n:

|Pr∈Xr(n)
[A(an, r) = 1]− Pr∈Yr(n)

[A(an, r) = 1]| ≥ 1

12

By hardcoding the inputs an into the existing circuit we can construct a circuit that serves as a statistical
test capable of distinguishing the two distributions Xn and Yn. Hence, this violates the computational
indistinguishability condition of Xn and Yn. Notice that the same proof would not necessarily work for
the Turing machine model. In this model, we cannot hard code the family of inputs {an}.

3 Pseudorandomness

In what follows we will assume the computational indistinguishability conventions:

• When ε(n) is not specified, we will assume that ε(n) = 1
t(n) (likewise for t(n)),

• Xn
c≡ Yn is the notation for C.I. if ε(n) = 1

nc , for t(n) = nc and for all c. Equivalently, for every

polynomial time T, ∃ε(n) = n−ω(1) such that |P[T (Xn) = 1]− P[T (Yn) = 1]| ≤ ε(n), and

• Xn, Yn C.I. in non-uniform model time t(n) if it also holds when given ≤ t(n) advice bits.

Definition 3 (Negligible Distinguishability). We call the distinguishability ε(n) negligible if for all c we
have that ε(n) ≤ O(1

nc).

Definition 4 (Pseudorandom). We say that Xn is pseudorandom if Xn
c≡ Un, where Un is the uniform

distribution.

Theorem 5. Let Xn and Yn be NCI sequence of random variables, and let Xk
n (Y kn) be k independent

copies of Xn (Yn). If k is poly(n), then Xk
n, Y

k
n are NCI.

Proof. Define Hi = Xk−i
n Y in. This means H0 = Xk

n and Hk = Y kn . We now use the following hybrid
construction:

H0 = XnXn · · ·XnXn

H1 = XnXn · · ·XnYn

.

.

.

Hk = YnYn · · ·YnYn

2

Assume for the sake of contradiction that |P[T (Xk
n) = 1] − P[T (Y kn) = 1]| > ε. Now notice, by

telescoping, that

|P[T (Xk
n) = 1]− P[T (Y kn) = 1]| = |

k∑
i=1

P[T (Hi−1) = 1]− P[T (Hi) = 1]|.

Therefore, there exists an i0 such that |P[T (Hi0−1) = 1] − P[T (Hi0) = 1]| > ε
k Notice that T (Hi0−1) =

T (Xk−i0
n XnY

i0−1
n) and T (Hi0) = T (Xk−i0

n YnY
i0−1
n). After averaging, this implies there is an assignment

of the first k−i0 variables, x1n · · ·xk−i0n and the last i0−1 variables, y1n, · · · , yi0−1n , such that the difference
|P(x1n · · ·xk−i0n Xny

1
n, · · · , yi0−1n) = 1]− P[T (x1n · · ·xk−i0n Yny

1
n, · · · , yi0−1n) = 1]| > ε

k .
Define now a new circuit T ′(Z), which has hardwired into T the assignments x1n · · ·xk−i0n and

y1n, · · · , yi0−1n and such that T ′(Z) = T (x1n · · ·xk−i0n Zy1n, · · · , yi0−1n). Notice that the size of the cir-
cuit for T ′ will be comparable to the size of the circuit for T . Furthermore, notice that |P[T ′(Xn) =
1]− P[T ′(Yn) = 1]| ≥ ε

k . Since k is poly(n), this contradicts the assumption that Xn and Yn are N.C.I.

Note: This proof requires the circuit model of computation because we really need the sequences
xin and yin to be hardwired into the circuit. In case of using the Turing machine model, one can get the
same result if we can sample from Xn and Yn in polynomial time.

3

