
6.842 Randomness and Computation March 5, 2014

Lecture 9
Lecturer: Ronitt Rubinfeld Scribe: Pritish Kamath

1 Lecture overview

The problem of “undirected s-t connectivity” is given a graph G and vertices s, t ∈ V (G), return ‘yes’
if s and t are in the same connected component of G, return ‘no’ otherwise. We show how to solve this
problem deterministically in logspace.

This result was first shown by Omer Reingold [1]. Most of the content in this scribe has been adapted
from Ronitt’s scanned notes and Chapter 21 in the text by Arora-Barak [2].

2 Preliminaries

We define some notions from spectral graph theory which will be relevant for the algorithm.

Definition 1 (Normalized Adjacency Matrix, Eigenvalues)
For any d-regular graph G, let AG denote the normalized adjacency matrix of G, namely,

(AG)ij =

{
1/d if (i, j) ∈ E(G)
0 if (i, j) /∈ E(G)

Also, let 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 be the eigenvalues of AG. We would refer to these eigenvalues
as λi(G). Also, when the context is clear, we would often refer to them as simply λi.

Definition 2 ((N, d, λ)-expander)
An N -vertex, d-regular graph G is said to be an (N, d, λ)-expander if λ2(G) ≤ λ

The following theorem follows from Cheeger’s inequality, and was first shown independently by Tanner
and by Alon and Milman.

Theorem 3 (Tanner, Alon-Milman) For any λ < 1, there exists ε > 0 such that for any (N, d, λ)-
expander G = (V,E), it holds that, for any S ⊆ V such that |S| ≤ N/2,

|N (S)| ≥ (1 + ε)|S|

where N (S) ⊆ V is a subset of vertices consisting of S and the neighbors of S.

The above theorem implies that for an (N, d, λ)-expander, the number of neighbors of S is at least
constant fraction of |S| (for |S| ≤ N/2), where the constant ε depends only on λ and is independent of
the size of the graph. This implies that the diameter of G is at most O(logN) because of the following
argument: Consider any two vertices s and t in G. The number of vertices within distance r of s (or t)
grows exponentially in r ((1 + ε)r to be precise), and hence there are more than N/2 vertices within a
O(logN) distance of s (or t). Thus, the distance between any s and t is also O(logN).

1

http://en.wikipedia.org/wiki/Expander_graph

3 Overview of Algorithm for Undirected s-t connectivity

3.1 An easy case

Suppose the given graph is such that every component of the graph is an (N, d, λ)-expander (for poten-
tially different values of N), where d and λ < 1 are universal constants.

We have seen that if G is an (N, d, λ)-expander, then the diameter of G is ∆ = O(logN). Since d is
a constant independent of N , we can trace out all d∆ paths of length ∆ starting from s in logarithmic
space1. If t lies in the same component as s then we would find t in the depth-first search and return
‘yes’, else we would return ‘no’.

3.2 Reducing to the easy case

To solve the problem of undirected s-t connectivity, we would convert our problem instance (G, s, t) to
a problem instance (G∗, s∗, t∗) where,

• |G∗| = O(poly(|G|))

• The vertices/edges of G∗ can be enumerated on the fly in logspace, and thus we wouldn’t have to
construct G∗ explicitly in memory

• s∗ and t∗ would be connected in G∗ if and only if s and t are connected in G

• G∗ would be d-regular and every component of G∗ would have λ2 ≤ λ < 1, where d and λ would
be some universal constants

If we had such a reduction we could check s-t connectivity in G by simply checking s∗-t∗ connectivity
in G∗, which can be done in O(log |G∗|) = O(log |G|) space (the easy case!).

3.3 Algorithm overview

We want to reduce G to G∗ where λ2(G∗) ≤ λ < 1. This is done via an iterative process of alternately
applying “powering” and “replacement product”. The “powering” step would decrease λ, but would
blow up the degree. The “replacement product” would bring down the degree to a constant, while
ensuring that λ does not increase. The iterations would go as G0 → G1 → G2 → · · · → G`, where G`

will have λ ≤ 7/10 and constant degree.

The steps of the complete algorithm are as follows,

• Pre-processing step: Convert G to G0 where G0 is non-bipartite and 3-regular.

• For i = 0, 1, · · · , ` (for a suitable choice of `, which will be chosen later)

� Replacement product: Obtain G′ by applying replacement product on Gi

� Powering stage: Construct Gi+1 by powering G′ some t times, i.e. Gi+1 ← (G′)t

• Run depth-first search on G` (uses only logspace - easy case!)

1this is equivalent to doing a depth-first search, where the stack size would never exceed ∆, and hence the total space
requirement is only O(∆)

2

4 Powering of Graphs

To start with, we have the following lemma (which we state without proof),

Lemma 4 For any non-bipartite, d-regular graph G on N vertices : λ2(G) ≤ 1− 1
dN2

That is, for any non-bipartite, regular graph, we have that λ2 is bounded away from 1 by an inverse-
polynomial factor. A natural idea to reduce λ2 is to power the graph.

Definition 5 (Graph Powering) For any graph G, define Gt as: V (Gt) = V (G) and (u, v) ∈ E(Gt)
if there exists a walk of length exactly t from u to v (that is, there exist v1, v2, · · · , vt−1 such that
(u, v1), (v1, v2), · · · , (vt−1, v) ∈ E(G)), with multiple edges if there are multiple such walks.

It is easy to see that AGt = At
G, and hence λ2(Gt) = λ2(G)t

Thus, by powering the graph, we are able to decrease the value of λ2. However, the side-effect of powering
is that that if we start with a d-regular graph G, then Gt has degree dt. Since we want λ ≤ 1/2 we would
need t = θ(log n), which would make dt = θ(poly(n)), and hence the easy case analysis as described
above would not work as is for Gt.

5 Replacement Product

To fix this issue of larger degree we use the replacement product technique to reduce the degree of the
graph, without increasing the value of λ2. First we define the notion of rotation maps for regular graphs.

Definition 6 (Rotation Maps) For a d-regular graph G, consider an ordering on the neighbors of
every vertex, numbering them from 1 to d. The rotation map Ĝ : V (G)× [d]→ V (G)× [d], is defined as
Ĝ(〈u, i〉) = 〈v, j〉 if v is the i-th neighbor of u and u is the j-th neighbor of v.

Definition 7 (Replacement Product) Let G be a N -vertex, D-regular graph, and let H be a D-
vertex, d-regular graph. The replacement product of G and H, denoted by GrH is defined as follows,

• For every vertex u of G, the graph GrH has a copy of H (including both edges and vertices), and
we denote this copy of H as Hu.

• If u, v are two neighboring vertices in G then we place d parallel edges between the i-th vertex in
Hu and the j-th vertex in Hv, where Ĝ(u, i) = (v, j).

Note that GrH is (2d)-regular and has ND vertices.

The replacement product has been summarized in Figure 1. [Note: This example is only for illustrative
purposes; G shown below is non-regular, although the definition of replacement product is for regular
graphs only.]

For the main algorithm, we would like to have a constant sized expander H, that is λ2(H) should be a
constant less than 1. To this end, we have the following lemma,

3

u

G H

Hu

GrH

Figure 1: Replacement product GrH

Lemma 8 (Existence of Expanders) (from class notes : citation needed)
For a sufficiently large constant d0, there exists a (d16

0 , d0, 1/2) expander.

We also require that λ2(GrH) ≤ λ2(G) if λ2(H) ≤ 1/2. This is true due to the following lemma,

Lemma 9 (Expansion of Replacement Product) (from class notes : citation needed)
If G is an (N,D, λ)-expander and H is an (D, d, α) expander, then GrH is an (ND, 2d, λGrH), where,

1

2
(1− λ)(1− α2) ≤ 1− λGrH

Using the above lemma, and the fact that H is a (d16
0 , d0, 1/2) expander, and assuming that λ > 2/3,

we get,

λGrH ≤ 1− 1

2
· (1− α2) · (1− λ)

≤ 1− 1

2
· 3

4
· (1− λ) [since α ≤ 1/2]

= 1− 3

8
· (1− λ)

≤ 1− 1

3
· (1− λ)

=
2

3
+
λ

3
≤ λ [since λ > 2/3]

Thus we obtain that λ2 of every connected component of GrH is less than λ, where λ is an upper
bound on the second eigenvalue of any connected component of G.

4

6 Putting it all together

We are finally ready to present the final algorithm.

• Pre-processing step: Convert G to G0 where G0 = GrCn, where Cn is the n-cycle. This
would make G0 a 4-regular graph. Add sufficiently many self loops on all vertices, to make G0 a
d16

0 -regular graph. [For ease of notation, let D0 = d16
0]

• For i = 0, 1, · · · , ` (where ` is smallest integer such that
(

1− 1
D0N2

)2`

≤ 7/10)

� Gi+1 = (GirH)8 (replacement product, followed by powering)

• G` is now a D0-regular graph with λ2 of every component being less than 7/10. Thus, we can run
depth-first search on G` to check connectivity between s∗ and t∗ where s∗ is some vertex in the
cloud generated by s and similarly for t∗ (Note: this uses only logspace!)

Note:
(1) H in the algorithm denotes the (d16

0 , d0, 1/2)-expander that we had in Lemma 8
(2) Since the edges in a replacement product or powered graph can be computed on the fly in logspace,
we can run this entire algorithm in logspace!

References

[1] Omer Reingold Undirected s-t connectivity in logspace STOC, 2005 J. ACM, 2008

[2] Sanjeev Arora, Boaz Barak Computational Complexity: A Modern Approach Cambridge University
Press, 2009

5

	Lecture overview
	Preliminaries
	Overview of Algorithm for Undirected s-t connectivity
	An easy case
	Reducing to the easy case
	Algorithm overview

	Powering of Graphs
	Replacement Product
	Putting it all together

