March 5, 2014

Lecture 9

Lecturer: Ronitt Rubinfeld

Scribe: Pritish Kamath

1 Lecture overview

The problem of "undirected *s*-*t* connectivity" is given a graph G and vertices $s, t \in V(G)$, return 'yes' if s and t are in the same connected component of G, return 'no' otherwise. We show how to solve this problem *deterministically* in *logspace*.

This result was first shown by Omer Reingold [1]. Most of the content in this scribe has been adapted from Ronitt's scanned notes and Chapter 21 in the text by Arora-Barak [2].

2 Preliminaries

We define some notions from spectral graph theory which will be relevant for the algorithm.

Definition 1 (Normalized Adjacency Matrix, Eigenvalues)

For any d-regular graph G, let A_G denote the normalized adjacency matrix of G, namely,

$$(A_G)_{ij} = \begin{cases} 1/d & \text{if } (i,j) \in E(G) \\ 0 & \text{if } (i,j) \notin E(G) \end{cases}$$

Also, let $1 = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge -1$ be the eigenvalues of A_G . We would refer to these eigenvalues as $\lambda_i(G)$. Also, when the context is clear, we would often refer to them as simply λ_i .

Definition 2 ((N, d, λ) -expander)

An N-vertex, d-regular graph G is said to be an (N, d, λ) -expander if $\lambda_2(G) \leq \lambda$

The following theorem follows from Cheeger's inequality, and was first shown independently by Tanner and by Alon and Milman.

Theorem 3 (Tanner, Alon-Milman) For any $\lambda < 1$, there exists $\varepsilon > 0$ such that for any (N, d, λ) expander G = (V, E), it holds that, for any $S \subseteq V$ such that $|S| \leq N/2$,

$$|\mathcal{N}(S)| \ge (1+\varepsilon)|S|$$

where $\mathcal{N}(S) \subseteq V$ is a subset of vertices consisting of S and the neighbors of S.

The above theorem implies that for an (N, d, λ) -expander, the number of neighbors of S is at least constant fraction of |S| (for $|S| \leq N/2$), where the constant ε depends only on λ and is independent of the size of the graph. This implies that the diameter of G is at most $O(\log N)$ because of the following argument: Consider any two vertices s and t in G. The number of vertices within distance r of s (or t) grows *exponentially* in r $((1 + \varepsilon)^r$ to be precise), and hence there are more than N/2 vertices within a $O(\log N)$ distance of s (or t). Thus, the distance between any s and t is also $O(\log N)$.

3 Overview of Algorithm for Undirected *s*-*t* connectivity

3.1 An easy case

Suppose the given graph is such that every component of the graph is an (N, d, λ) -expander (for potentially different values of N), where d and $\lambda < 1$ are universal constants.

We have seen that if G is an (N, d, λ) -expander, then the diameter of G is $\Delta = O(\log N)$. Since d is a constant independent of N, we can trace out all d^{Δ} paths of length Δ starting from s in logarithmic space¹. If t lies in the same component as s then we would find t in the depth-first search and return 'yes', else we would return 'no'.

3.2 Reducing to the easy case

To solve the problem of undirected s-t connectivity, we would convert our problem instance (G, s, t) to a problem instance (G^*, s^*, t^*) where,

- $|G^*| = O(\operatorname{poly}(|G|))$
- The vertices/edges of G^* can be enumerated on the fly in logspace, and thus we wouldn't have to construct G^* explicitly in memory
- s^* and t^* would be connected in G^* if and only if s and t are connected in G
- G^* would be *d*-regular and every component of G^* would have $\lambda_2 \leq \lambda < 1$, where *d* and λ would be some universal constants

If we had such a reduction we could check s-t connectivity in G by simply checking s^*-t^* connectivity in G^* , which can be done in $O(\log |G^*|) = O(\log |G|)$ space (the easy case!).

3.3 Algorithm overview

We want to reduce G to G^* where $\lambda_2(G^*) \leq \lambda < 1$. This is done via an iterative process of alternately applying "powering" and "replacement product". The "powering" step would decrease λ , but would blow up the degree. The "replacement product" would bring down the degree to a constant, while ensuring that λ does not increase. The iterations would go as $G_0 \to G_1 \to G_2 \to \cdots \to G_\ell$, where G_ℓ will have $\lambda \leq 7/10$ and constant degree.

The steps of the complete algorithm are as follows,

- **Pre-processing step:** Convert G to G_0 where G_0 is non-bipartite and 3-regular.
- For $i = 0, 1, \dots, \ell$ (for a suitable choice of ℓ , which will be chosen later)
 - \diamond **Replacement product:** Obtain G' by applying replacement product on G_i
 - ♦ **Powering stage:** Construct G_{i+1} by powering G' some t times, i.e. $G_{i+1} \leftarrow (G')^t$
- Run depth-first search on G_{ℓ} (uses only logspace easy case!)

¹this is equivalent to doing a depth-first search, where the stack size would never exceed Δ , and hence the total space requirement is only $O(\Delta)$

4 Powering of Graphs

To start with, we have the following lemma (which we state without proof),

Lemma 4 For any non-bipartite, d-regular graph G on N vertices : $\lambda_2(G) \leq 1 - \frac{1}{dN^2}$

That is, for any non-bipartite, regular graph, we have that λ_2 is bounded away from 1 by an inversepolynomial factor. A natural idea to reduce λ_2 is to *power* the graph.

Definition 5 (Graph Powering) For any graph G, define G^t as: $V(G^t) = V(G)$ and $(u, v) \in E(G^t)$ if there exists a walk of length exactly t from u to v (that is, there exist v_1, v_2, \dots, v_{t-1} such that $(u, v_1), (v_1, v_2), \dots, (v_{t-1}, v) \in E(G)$), with multiple edges if there are multiple such walks.

It is easy to see that $A_{G^t} = A_G^t$, and hence $\lambda_2(G^t) = \lambda_2(G)^t$

Thus, by powering the graph, we are able to decrease the value of λ_2 . However, the side-effect of powering is that that if we start with a *d*-regular graph *G*, then G^t has degree d^t . Since we want $\lambda \leq 1/2$ we would need $t = \theta(\log n)$, which would make $d^t = \theta(\operatorname{poly}(n))$, and hence the *easy case* analysis as described above would not work as is for G^t .

5 Replacement Product

To fix this issue of larger degree we use the *replacement product* technique to reduce the degree of the graph, without increasing the value of λ_2 . First we define the notion of rotation maps for regular graphs.

Definition 6 (Rotation Maps) For a d-regular graph G, consider an ordering on the neighbors of every vertex, numbering them from 1 to d. The rotation map $\hat{G}: V(G) \times [d] \to V(G) \times [d]$, is defined as $\hat{G}(\langle u, i \rangle) = \langle v, j \rangle$ if v is the *i*-th neighbor of u and u is the *j*-th neighbor of v.

Definition 7 (Replacement Product) Let G be a N-vertex, D-regular graph, and let H be a D-vertex, d-regular graph. The replacement product of G and H, denoted by G $\mathbb{R}H$ is defined as follows,

- For every vertex u of G, the graph G R H has a copy of H (including both edges and vertices), and we denote this copy of H as H_u.
- If u, v are two neighboring vertices in G then we place d parallel edges between the *i*-th vertex in H_u and the *j*-th vertex in H_v , where $\hat{G}(u,i) = (v,j)$.

Note that $G \mathbb{R} H$ is (2d)-regular and has ND vertices.

The replacement product has been summarized in Figure 1. [*Note:* This example is only for illustrative purposes; G shown below is non-regular, although the definition of replacement product is for regular graphs only.]

For the main algorithm, we would like to have a constant sized expander H, that is $\lambda_2(H)$ should be a constant less than 1. To this end, we have the following lemma,

Figure 1: Replacement product $G \mathbb{R} H$

Lemma 8 (Existence of Expanders) (from class notes : citation needed) For a sufficiently large constant d_0 , there exists a $(d_0^{16}, d_0, 1/2)$ expander.

We also require that $\lambda_2(G \mathbb{R} H) \leq \lambda_2(G)$ if $\lambda_2(H) \leq 1/2$. This is true due to the following lemma,

Lemma 9 (Expansion of Replacement Product) (from class notes : citation needed) If G is an (N, D, λ) -expander and H is an (D, d, α) expander, then $G(\mathbb{R})H$ is an $(ND, 2d, \lambda)$, where M is a constant.

$$f G$$
 is an (N, D, λ) -expander and H is an (D, d, α) expander, then GRH is an $(ND, 2d, \lambda_{GRH})$, where,

$$\frac{1}{2}(1-\lambda)(1-\alpha^2) \le 1-\lambda_{G\mathbb{R}H}$$

Using the above lemma, and the fact that H is a $(d_0^{16}, d_0, 1/2)$ expander, and assuming that $\lambda > 2/3$, we get,

$$\begin{aligned} \lambda_{G \widehat{\otimes} H} &\leq 1 - \frac{1}{2} \cdot (1 - \alpha^2) \cdot (1 - \lambda) \\ &\leq 1 - \frac{1}{2} \cdot \frac{3}{4} \cdot (1 - \lambda) \quad [\text{since } \alpha \leq 1/2 \\ &= 1 - \frac{3}{8} \cdot (1 - \lambda) \\ &\leq 1 - \frac{1}{3} \cdot (1 - \lambda) \\ &= \frac{2}{3} + \frac{\lambda}{3} \\ &\leq \lambda \qquad [\text{since } \lambda > 2/3] \end{aligned}$$

Thus we obtain that λ_2 of every connected component of $G \otimes H$ is less than λ , where λ is an upper bound on the second eigenvalue of any connected component of G.

6 Putting it all together

We are finally ready to present the final algorithm.

- **Pre-processing step:** Convert G to G_0 where $G_0 = G \otimes C_n$, where C_n is the *n*-cycle. This would make G_0 a 4-regular graph. Add sufficiently many self loops on all vertices, to make G_0 a d_0^{16} -regular graph. [For ease of notation, let $D_0 = d_0^{16}$]
- For $i = 0, 1, \cdots, \ell$ (where ℓ is smallest integer such that $\left(1 \frac{1}{D_0 N^2}\right)^{2^{\ell}} \le 7/10$)

♦ $G_{i+1} = (G_i ℝH)^8$ (replacement product, followed by powering)

• G_{ℓ} is now a D_0 -regular graph with λ_2 of every component being less than 7/10. Thus, we can run depth-first search on G_{ℓ} to check connectivity between s^* and t^* where s^* is some vertex in the *cloud* generated by s and similarly for t^* (Note: this uses only logspace!)

Note:

(1) H in the algorithm denotes the $(d_0^{16}, d_0, 1/2)$ -expander that we had in Lemma 8

(2) Since the edges in a replacement product or powered graph can be computed on the fly in logspace, we can run this entire algorithm in logspace!

References

- [1] Omer Reingold Undirected s-t connectivity in logspace STOC, 2005 J. ACM, 2008
- [2] Sanjeev Arora, Boaz Barak Computational Complexity: A Modern Approach Cambridge University Press, 2009