
6.842 Randomness and Computation March 17, 2014

Lecture 12
Lecturer: Ronitt Rubinfeld Scribe: Alex Wein

1 Lecture Overview

This lecture will cover learning. Topics will include:

• Learning from random examples

• PAC (probably approximately correct) learning

• Brute force learning algorithm

• Efficient learning algorithm: conjunctions

• Begin: learning via Fourier representation

2 Learning from random examples

Suppose there is an unknown function f : D → R that we wish to learn. We are given access to an
example oracle Ex(f) which generates m i.i.d. samples x1, . . . , xm from a given distribution D on D, and
outputs (x1, f(x1)), (x2, f(x2)), . . . , (xm, f(xm)). We (the learner) must output a hypothesis function
h : D → R that should be similar to f . Note that the learner is not allowed to choose x values and query
the corresponding f(x). Instead, the learner must work with whatever random examples the example
oracle happens to generate.

The following two related definitions formalize the notion of h being “close to” f .

Definition 1 The error of h with respect to f is error(h) = Prx∈D[h(x) 6= f(x)].

Definition 2 h is ε-close to f with respect to D if Prx∈D[f(x) 6= h(x)] ≤ ε.

The term error is generally used in learning whereas the term ε-close is generally used in property test-
ing, but both refer to the same concept. Note the importance of the distribution D. We can only expect
our learning algorithms to do well when the distribution used to measure the error is the same as the
distribution used to generate the examples. Today we will take D to be the uniform distribution.

Now we formally define the learning problem based on the PAC (probably approximately correct) frame-
work. We cannot hope to learn if f can be an arbitrary function, so we assume f belongs to a known
class of functions C called the concept class.

Definition 3 A uniform distribution learning algorithm for a concept class C is an algorithm A such
that

• A is given ε, δ > 0 and access to Ex(f) for some f ∈ C. (Here, C is known but f is unknown.)

• A outputs h such that with probability ≥ 1−δ, error(h) with respect to f is at most ε (or equivalently,
h is ε-close to f).

The following parameters are of interest when designing a learning algorithm.

• Runtime

1

• Sample complexity (number of examples used)

• Accuracy paramter ε

• Confidence parameter δ

• Description of h

• Efficiency of evaluating h

Note that it is not obvious how the output function h should be described. When h ∈ C and h is
described in the same way that f is then we have proper learning. We generally want the description of
h to have length O(log |C|) and clearly it is impossible to do better.

It is possible (but somewhat involved) to perform error reduction in order to arbitrarily decrease the
confidence parameter δ. The runtime scales as O(log 1

δ).

3 Brute force learning algorithm

In this section we will see that the issue is not the sample complexity but the runtime. In particular we
will give a simple learning algorithm that uses only a few samples but has bad runtime. This construction
works for any distribution D but we will take D to be uniform here. The algorithm is as follows.

• Draw M = 1
ε (ln |C|+ ln 1

δ) uniform samples.

• Search over all h ∈ C until you find one that is consistent with all M examples, and output it.
(Choose arbitrarily if there is more than one such h.)

To analyze the behavior of this algorithm, note that f is consistent with all examples and so something
gets output. We need to show that whatever h gets output has small error. Call h “bad” if it is ε-far
from f (i.e. not ε-close). The probability that a particular bad h is consistent with all M examples
is at most (1 − ε)M because h and f differ on at most ε fraction of inputs. By the union bound, the
probability that any bad h ∈ C is consistent with all examples is at most

|C|(1− ε)M = |C|(1− ε) 1
ε (ln |C|+ln 1

δ) ≤ |C|(e−1)ln |C|+ln 1
δ ≤ δ.

Here we have used the identity ln(1 +x) ≤ x in order to conclude ln(1− ε) ≤ −ε ⇒ 1
ε ln(1− ε) ≤ −1 ⇒

(1− ε)1/ε ≤ e−1. Therefore the algorithm outputs a good h with probability ≥ 1− δ.

One problem to watch out for is if C is too big then you will need to take many samples before you can
rule out all bad h’s. One example of this is the “Bible code”, a purported set of secret messages hidden
in the Bible. If you try enough different ways of extracting a secret message you are bound to find one
that works by chance. Similarly, if you look through enough statistical studies you are bound to find
some that are wrong, allowing you to claim a false result.

4 Efficient learning algorithm: conjunction

Let C be the conjunctions over {0, 1}n, e.g. f(x) = xixj x̄k. A conjunction is a single “and” of variables
and/or their complements. Note that there are 3n different possible conjunctions because for each i, the
conjunction can contain xi, x̄i, or neither. We might first wonder whether it is possible to achieve perfect
accuracy (ε = 0) using subexponentially-many samples. It turns out this is impossible because there is

2

no way to distinguish the zero function f(x) = 0 from a conjunction of the form f(x) = ∧ixbii where bi
indicates whether xi is complemented or not. The reason you need exponentially-many samples to dis-
tinguish these two functions is because the second one only evaluates to 1 on one of the 2n possible inputs.

The following is an efficient learning algorithm for conjunctions.

• Draw poly(1
ε) random examples and estimate Pr[f(x) = 1] to additive error ± ε4 . If the estimate

is < ε
2 then output h(x) ≡ 0.

• Since the estimate is ≥ ε
2 with error ε

4 , we must have Pr[f(x) = 1] ≥ ε
4 . This means we expect a

new random positive example (i.e. f(x) = 1) every O(1
ε) examples.

• Consider only the set of positive examples. Let V be the set of indices i such that xi is set the
same way in every positive example. Output h(x) = ∧i∈V xbii where bi indicates whether or not xi
was complemented in every positive example.

To analyze the behavior of this algorithm, note that if xbii appears in f then it will be set the same way in

every positive example and will therefore appear in h. If xbii does not appear in f then Pr[i ∈ V] ≤ 1
2k−1

where k is the number of positive examples, because each of the positive examples sets xi to 0 or 1
uniformly and independently. By the union bound, the probability that any i not in f survives is ≤ n

2k−1 .
This means it is sufficient to run the algorithm until we have seen k = 1 + log2

n
δ positive examples. The

probability of failure is ≤ n
2k−1 = δ. Note that the total number of samples used is O(1

ε log n
δ). This is

even better than the brute force algorithm, which would require M = 1
ε (ln 3n + ln 1

δ) = O(1
ε (n+ log 1

δ)).

5 Learning via Fourier representation

We will next be talking about learning functions that are sparse in the Fourier domain, i.e. most Fourier
coefficients are small. Such functions can be well-approximated by only the largest few coefficients. Our
first result will be that it is easy to approximate a single Fourier coefficient of the unknown function f .

Lemma 4 It is possible to approximate any one Fourier coefficient S to within additive error γ (i.e.

|output− f̂(S)| ≤ γ) with probability ≥ 1− δ using O(1
γ2 log 1

δ) samples.

The idea of the proof is to use the fact from last time that f̂(S) = 2 Prx[f(x) = χS(x)] − 1 and to
estimate the probability Prx[f(x) = χS(x)] using the Chernoff bound or Hoeffding’s inequality. Note
that this requires only a random example oracle rather than the ability to query specific values of x.

Although it is easy to approximate a single Fourier coefficient of f , it is much harder to find the largest
Fourier coefficients of f . More on this next time.

3

