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Lecture 1

Lecturer: Romnitt Rubinfeld Scribe: Yuancheng Yu

1 Diameter of a point set

Given distance matrix D of m points, where D;; = Dj; is the distance between ¢ and j, and the triangle
inequality is satisfied, i.e., for any 7,7, k, D;; < Di + Dy, let max D;; be the diameter of the point set.
Output (k,1) such that Dy; approximates the diameter.

1.1 2-approximation algorithm

For some arbitrary k € {1,...,m}, find | that maximizes Dy;, and output (k,1).
Running time It takes O(m) = O(y/n) time.

Correctness Let D;; be the diameter, then Dy = %(Dkl + Dy) > %(Dki + Dy;) = %(D”c + Dy;) >

%Dij, i.e., Dy is a 2-approximation of the diameter.

2 Approximation of the number of connected components

Given a graph G(V, E) (adjacency list representation), max degree d, and ¢, output y such that |y — ¢| <
en with high probability, where ¢ is the number of connected components (additive approximation to
within en).
2.1 A different characterization of the number of components
For any node v, let n, be the size of v’s component. Observe that for any component A C V,
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Computing % and summation over n terms both need O(n) time; can we give a good estimate faster?
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We would like to estimate ﬁ quickly and estimate ) % via sampling bounds. Let 7, = min{n,, %},
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Lemma 1 7, is a “good” estimate, i.e., for any u,
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Corollary 2 ¢ is a “good” estimate, i.e.,
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This estimation is useful if we can compute ¢ faster.

2.3 Algorithm to compute 7,

Run BFS from u for % steps (stop if the entire component is visited), and output the number of nodes
visited.

Correctness If the entire component is visited, n, < %, and the output is n,, = n,. Otherwise n, > %,
and the output is % = Ny

Runtime Since each BFS step takes O(d) time, we can compute 7, in O(g) time.

Summing all 7, gives a linear time algorithm. If we can estimate the average component size faster,
we can simply multiply it by n.

2.4 Algorithm to estimate ¢

Let r = E% for some constant b to be determined, sample r random nodes uy, ..., u,, compute 7, for
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Theorem 3 (Chernoff Bound) Xi,...,X, iid, X; € [0,1], S=5Y""_, X;, p= E[X;] = E[s]/r, then
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Corollary 5 : Pr{jc—¢| <en] > 3.

Proof If |¢ —¢| < G, by triangle inequality, |c — ¢é| < |c — ¢| 4 [¢ — ¢ < G + G = en, so
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3 Approximating Minimum Spanning Tree (MST)

Given a connected graph G(V, E) (adjacency list representation), max degree d, edge weights wy, €
{1,...,w} U {0} (Wyy = 0 <= (u,v) € E), and €, output M € [(1 — €)M, (1 + €)M], where M is the
weight of the MST. Note that the weight range implies that n — 1 < M < w(n — 1).

3.1 A different characterization of MST

Let B = {(u,v) | wyy € {1,...,i}}, GO = (V, E®), and C) be the number of components in G*).
For example, when w =1, G = G, and M = n — 1 since G is connected. For w = 2 such as below,
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The idea of Kruskal’s algorithm is to use as many weight 1 edges as possible, and only use C) — 1
weight 2 edges to connect the components in G(M). Since the n — 1 edges of the MST have weight at
least 1, and C(") — 1 of them have additional weight 2 — 1 = 1, the total weight of the MST is

M:(n—1)+(c<1>—1) —n—2+00

Claim 6 In general, M =n —w + > "' 0.

Proof Let a; be the number of weight i edges in any MST of G (Kruskal’s algorithm implies that all
MSTs have the same ;). Then >, ;0 = C) — 1, where Y"1 a; = C® —1=n—1, and
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3.2 Approximation Algorithm

For i = 1 to w — 1, approximate the number of components C® to within 5-n = €'n additive error.
Output M =n — 2+ S CO.

Runtime Each number of components approximation takes O(d/e'*) = O(dw?*/e*) time (the ¢ = 5

error introduces poly (log %) overhead), and the total runtime is O(dw® /€*).
Note that to compute G(¥), we can simply ignore edges with weights greater than 7. The runtime can
be improved to O(dwlog(dw/¢)/e?) and has a lower bound of Q(dw/e?).

Approximation guarantee Approximate the number of components C® within ¢ error with prob-
ability at least 1 — 1/(4w). Then by union bound, the probability that all w — 1 approximations are

within ¢ error is at least 1 — w/(4dw) = 3/4. And ’M - M

< wson = 5§, a small additive error. Since

all weights are at least 1, M >n —1 > n/2, and ‘M — M‘ < eM, a small multiplicative error.

Remark The runtime depends only on d, w,1/e, and we can bound additive/multiplicative errors.



