Sublinear Time Algorithms
March 4, 2019

Homework 2

Lecturer: Ronitt Rubinfeld
Due Date: March 18, 2019

Turn in your solution to each problem on a separate sheet of paper, with your name on each one.

1. **Testing the monotonicity of a list – the case of bits:** Given a function \(f : [n] \to \{0,1\} \). Given \(0 < \epsilon < 1 \), show an algorithm that runs in \(O(1/poly(\epsilon)) \) queries to \(f \), with the following behavior:
 - If \(f \) is monotone, then the algorithm always outputs “pass”.
 - If \(f \) is \(\epsilon \)-far from monotone, then the algorithm outputs “fail” with probability at least \(3/4 \).

2. **How much can adaptivity help?**
 - Assume that your computational model is such that a query returns a single bit. In such a model, show that any algorithm making \(q \) queries can be made into a nonadaptive (i.e., where the queries do not depend on the results of any previous queries) tester that uses only \(2^q \) queries.
 - **Canonical forms for graph property testers for the adjacency matrix model.** Define a graph property to be a property that is preserved under graph isomorphism – i.e., if \(G \) has the property and \(G' \) is isomorphic to \(G \), then \(G' \) must also have the property. Show that any adaptive algorithm for property testing which makes \(q \) queries, can be made nonadaptive algorithm using only \(O(q^2) \) queries.

3. **Property testing of the clusterability of a set of points.** Given a set \(X \) of points in any metric space. Assume that one can compute the distance between any pair of points in one step. Say that \(X \) is \((k,b)\)-diameter clusterable if \(X \) can be partitioned into \(k \) subsets (clusters) such that the maximum distance between any pair of points in a cluster is \(b \). Say that \(X \) is \(\epsilon \)-far from \((k,b)\)-diameter clusterable if at least \(\epsilon |X| \) points must be deleted from \(X \) in order to make it \((k,b)\)-diameter clusterable.
 Show how to distinguish the case when \(X \) is \((k,b)\)-diameter clusterable from the case when \(X \) is \(\epsilon \)-far from \((k,2b)\)-diameter clusterable. Your algorithm should use polynomial in \(k, 1/\epsilon \) queries. It is possible to get an algorithm which uses \(O((k^2 \log k)/\epsilon) \) queries.