
Sublinear Time Algorithms April 22, 2019

Homework 5

Lecturer: Ronitt Rubinfeld Due Date: May 6, 2019

Turn in your solution to each problem on a separate sheet of paper, with your name on each
one.

1. In the following questions, assume that all input graphs start out with unique IDs.

(a) Given a graph of max degree at most ∆, show that the edges can be decomposed
into at most ∆ oriented forests (where each node has outdegree at most 1, the roots
have outdegree 0, and edges point along the path to a root). Show that given a node,
the edge in oriented forest i and the direction of the edge, can be computed in O(∆)
sequential time.

(b) Give a distributed algorithm for 6-coloring trees. Assume that the tree can be viewed
as a rooted tree in which children know who their parent is. For full credit, your
algorithm should run in k = O(log∗ n) rounds. Note that this gives an LCA for 6-
coloring trees which runs in 2O(log∗ n) = O(log∗ n) probes. Hint: Consider algorithms
in which a node u looks at its parent v and recolors itself based on the location of the
first bit which differs between u and v.

(c) Given graph G along with a c-coloring of the nodes (assume you can query the
coloring of any node in 1 step). Show how to find an MIS in c distributed rounds.

(d) Combine the above to give an LCA for 6∆ coloring a degree at most ∆ graph G.

2. In class, we gave an LCA for the spanner problem that works for graphs of max degree at
most n3/4. Show how to construct an LCA for the spanner problem for any graph. For
full credit, your runtime should still be O(n3/4) per query.

Hint: (1) Handle the nodes that have degree between
√
n and n3/4 with a different setting

of parameters for determining centers. (2) For nodes of degree at least n3/4, partition the
edges into groups of size n3/4, and add a rule 3 edge (u, v) whenever v introduces u to a
new cluster within its partition (this will allow more edges in the final graph, but show
that it won’t destroy the sparsity of the spanner).

3. Say that f : {0, 1}n → {0, ..., n} is monotone if for all x, y such that xi ≤ yi for i = 1, . . . , n,
then f(x) ≤ f(y). Show that distinguishing whether f is monotone from the case that
f is ε-far from monotone (i.e., there is no monotone g such that f and g differ on at
most ε-fraction of the domain {0, 1}n) requires Ω(n) queries. Hint: reduce from the
communication complexity problem of disjointness. Another hint: Let |x| be the number
of 1’s in x. Let Alice define p(x) to be −1 if the parity of the input bits in her set is 1, and 1
if the parity is 0. Let Bob define q(x) similarly. Let them compute h(x) = 2|x|+p(x)+q(x).

1

