Lecture 16:

Hypothesis Testing
A useful tool: Hypothesis Testing

Given collection of distributions \(\mathcal{H} \), at least one has high accuracy for describing \(p \) given via samples.output one of collection that is close to \(p \).

How many samples in terms of \(|\mathcal{H}| + \text{domain size} \)?

Why is this different than testing closeness, uniformly?

Do we have the same lower bounds?

\[\textbf{NO} \]

Since \(p \) is guaranteed to be close to some \(q \in \mathcal{H} \), all bets are off!!

A subtool: allows comparing two hypotheses

\[\textbf{Thm} \]

Given sample access to \(p \)

Given \(h_1, h_2 \) hypothesis distributions (fully known to algorithm)

Given accuracy parameter \(\epsilon' \), confidence \(\delta' \)

Algorithm "Choose" takes \(O(\log(1/\delta')/\epsilon'^2) \) samples & outputs

\[h \in \mathcal{E}_{h_1, h_2, 3} \]. If one of \(h_1, h_2 \) has \(\|h_1 - p\|_1 < \epsilon' \)

Then with prob \(\geq 1 - \delta' \), output \(h \) has \(\|h - p\|_1 \leq 2\epsilon' \)

\[\text{if both } h_1, h_2 \text{ far, no guarantees} \]

\[\text{if one is close, you output something pretty close.} \]
Actually, will prove something stronger!

Thm \[p \] given via samples

\[h_1, h_2 \] fully known \(\Rightarrow \) is \(\varepsilon' \)-close to at least one of \(h_1, h_2 \)

\(\varepsilon', \delta' \) given

Algorithm "Choose" takes \(O(\log(\varepsilon'))(1/\varepsilon')^2 \) samples

\(\Rightarrow \) outputs \(h \in \{h_1, h_2\} \) satisfying:

1. if \(h \) more than \(12 \varepsilon' \)-far from \(p \), unlikely to output it as winner

\(\Rightarrow \) very bad

2. if \(h \) more than \(10 \varepsilon' \)-far, unlikely to output as winner

\(\Rightarrow \) not that bad

\(\Rightarrow \) might tie but won't win

\[\text{Why such crazy constants??} \]
Proof of "Subgoal":

idea: wlog \(h_1 \) is \(\varepsilon' \)-close,
if \(h_2 \) is \(10\varepsilon' \)-close, then either output ok as "winner" or "tie"
else, if \(h_2 \) is not \(10\varepsilon' \)-close but is \(12\varepsilon' \)-close, ok to "tie" or output \(h_0 \)
else, \(h_2 \) is \(12\varepsilon' \)-far, from \(h_1 \) + \(11 \varepsilon' \)-far from \(p \)
so samples from \(p \) will fall in "difference" between \(h_1 + h_2 \) will output \(h_1 \)

Algorithm
Choose: \(P, h_1, h_2 \)

First some definitions:

\[A = \{ x \mid h_1(x) > h_2(x) \} \]

\[a_1 = h_1(A) \]
\[a_2 = h_2(A) \]

note \(||h_1-h_2|| = 2(a_1-a_2) \)

1. if \(a_1-a_2 \leq 5\varepsilon' \) declare "tie" + return \(h_1 \)
 (no samples needed)

2. draw \(m = 2 \cdot \frac{\log \frac{1}{\delta}}{(\varepsilon')^2} \) samples \(s_1 \ldots s_m \) from \(P \)

3. \(\alpha \leftarrow \frac{1}{m} \sum_{i=1}^{m} s_i \in A \)

4. if \(\alpha > a_1 - \frac{3}{2} \varepsilon' \) return \(h_1 \)
 else if \(\alpha < a_2 + \frac{3}{2} \varepsilon' \) return \(h_2 \)
 else declare "tie" + return \(h_1 \)
Why does it work?

\[E[\alpha] = p(A) \]

- if reach step 2, whp (via Chernoff) \(|\alpha - E[\alpha]| \leq \frac{\varepsilon'}{2} \)

if \(\|p - h_1\|_1 > 12\varepsilon' \) then since other is \(\leq \varepsilon' \) distance,
or \(\|p - h_2\|_1 > 12\varepsilon' \)

\(\|h_1 - h_2\|_1 > 3\varepsilon' \)

so will reach step 2

if \(p \varepsilon' \)-close to \(h_1 \), whp \(\alpha > \alpha_1 - \varepsilon' - \varepsilon'' \)

so output \(h_1 \)

else, \(p \) is \(12\varepsilon' \) far from \(h_1 \)

but \(\varepsilon' \)-close to \(h_2 \)

whp \(\alpha > \alpha_2 + \varepsilon' + \varepsilon'' \)

if one of \(h_1, h_2 \) \(\varepsilon' \)-close, and other is \(>10\varepsilon' \) far but not \(12\varepsilon' \) far,

if \(\alpha_1 - \alpha_2 \leq 5\varepsilon' \) then declares draw, so neither are declared "winner"

else \(\|h_1 - h_2\|_1 > 9\varepsilon' \) far

+ Similar reasoning shows that medium far will not win (in fact, will lose)

- if both are \(10\varepsilon' \)-close, might output \(h_1, h_2 \) or "tie"

Recall: \(\|h_1 - h_2\|_1 = 2(\alpha_1 - \alpha_2) \)
The Cover Method

A method for learning distributions

\[\text{def } C \text{ is a } \varepsilon \text{-cover of } \mathcal{P} \text{ if } \forall p \in \mathcal{P} \]

\[\exists \ v \in C \text{ s.t. } \|p - v\|_1 \leq \varepsilon \]

Why useful?

Hopefully \(C \) is much smaller than \(\mathcal{P} \) allows us to approximate.

Note: \(C \) not unique

Big improvement: union bound over size of \(C \) not \(|\mathcal{P}| \)!

Theorem: Algorithm given \(p \in \mathcal{P} \), which takes \(O(\frac{1}{\varepsilon^2 \log |C|}) \) samples of \(p \) outputs \(h \in C \)

\[\text{st. } \|h - p\|_1 \leq 6\varepsilon \] with prob \(\geq 9/10 \)

Proof:

Since \(p \in \mathcal{P} \), \(\exists v \in C \) s.t. \(\|p - v\|_1 \leq \varepsilon \)

(but there could be more than 1) \(-\) we just need to find one, not even required to return

will run Choose on \(p \) with every pair \(q_1, q_2 \in C \)

if \(q \) doesn't win all of its "matches" then it loses to someone that is not so bad

Furthermore can't show that with \(p \) there is a \(q' \) s.t.

\(q' \) always satisfies all matches (best \(q \) never loses, anyone that is \(\leq 10\varepsilon \) far)

\(q' \) needs all matches to give correct output - union bound on \(\binom{|C|}{2} \) matches
The cover method

Example 1: learning distribution of a coin

domain = \{0, 1\}

need to learn bias

Here C^o = \mathbb{Z} = \{0, 1, \frac{1}{k}, \frac{2}{k}, ... \frac{k-1}{k}, \frac{k}{k} = 1\}

if \text{ use } C^o = \mathbb{Z} \text{ then } \forall \text{ bias } p, \quad \text{let } \frac{i}{k} \leq p \leq \frac{i+1}{k}

then picking \hat{p} = \frac{i}{k} \text{ gives } \|p - \hat{p}\|_1 = \left| \frac{i}{k} - p \right| + \left(\frac{i-\left\lfloor \frac{i}{k} \right\rfloor}{k} \right) \left| p \right| \leq \frac{2}{k}

so using \quad k = \Theta\left(\frac{1}{\varepsilon} \right) \text{ gives } \|p - \hat{p}\|_1 \leq \varepsilon

|C^o| = k + 1 = 6(\varepsilon) \quad \# \text{ samples needed by cover method is } O\left(\frac{1}{\varepsilon^2} \cdot \log \frac{1}{\varepsilon}\right)

Example 2: 2-bucket distributions

now need to specify \alpha \quad \text{and } \beta

so \quad C^o = \mathbb{Z} \left(\frac{\alpha}{k}, \frac{\beta}{k} \right), \quad \alpha, \beta \in \mathbb{Z}\quad \#\text{samples}

|C^o| = \Theta\left(\frac{1}{\varepsilon^2}\right) \quad \# \text{ samples is } O\left(\frac{1}{\varepsilon^2} \cdot \log \frac{1}{\varepsilon}\right)

Example 3: monotone distributions

Birge \implies C^o = \mathbb{Z} \left(\frac{\lambda_1}{k}, \frac{\lambda_2}{k}, ... \frac{\lambda_n}{k} \right), \lambda_1, \lambda_2, ... \in \mathbb{Z} \quad \#\text{samples}

|C^o| = \Theta\left(\frac{1}{\varepsilon \log \frac{n}{\varepsilon}}\right) \quad \# \text{ samples is } O\left(\frac{1}{\varepsilon^3} \cdot \log n \cdot \log \frac{1}{\varepsilon}\right)