Lecture 18:

Local Computation Algorithms
for MIS
Maximal Independent Set:

\[\text{def. } U \subseteq V \text{ is "Maximal Independent Set" (MIS)} \]

\[\text{(1) } \forall u_1, u_2 \in U \quad (u_1, u_2) \notin E \quad \text{ (independent)} \]

\[\text{(2) } \nexists w \notin U \text{ s.t. } U \cup \{w\} \text{ is also independent} \quad \text{(maximal)} \]

Today's assumption (important):

- \(G \) has max degree \(d \)

Note: Maximum Independent set is NP-complete

Maximal " " can be solved by greedy
Distributed Algorithm for Maximal Independent Set (MIS): "Luby's Algorithm" (one of many variants):

- all nodes set to "live"

- repeat K times in parallel:

 - V nodes v, v "selects" self with prob $= \frac{1}{2d}$

 - if V live: if v selects self) \iff (no nbr w of v selects itself)

 - then

 - (1) v added to MIS
 - (2) $V +$ nbrs of v removed from graph (set to "dead")

(for purposes of analyses, continue to select selves even after "die")

If goal is to "kill" the whole graph:

Thm. $\Pr \left[\text{ # phases } \geq 8 \log n \right] \leq \frac{1}{n}$

Corr. $\mathbb{E}[\text{ # phases }]$ is $O(d \log n)$ \Leftrightarrow can improve!!
Main Lemma \[\Pr \{ \forall v \text{ live } \Rightarrow \text{ adds self to MIS in one round} \} \geq \frac{1}{yd} \]

Pf. \[\forall v \text{ live } \]

\[\Pr \{ v \text{ selects self} \} = \frac{1}{2d} \]

\[\Pr \{ \text{ any } w \in N(v) \text{ selects self} \} \leq \sum_{w \in N(v)} \frac{1}{2d} \text{ union bound} \]

\[\leq \frac{d}{2d} = \frac{1}{2} \]

\[\therefore \Pr \{ \forall v \text{ selects self } \cap \text{ no nbr selects self} \} \geq \frac{1}{2d} \left(1 - \frac{1}{2} \right) = \frac{1}{yd} \]

\[\Rightarrow \text{ Corr. } \Pr \{ \forall v \text{ alive after } \frac{4}{y} kd \text{ rounds} \leq \left(1 - \frac{1}{y_4} \right)^{\frac{4}{y} kd} \leq e^{-k} \]

Note: Luby's alg uses \(K = O(\log n) \)

so union bound \(\Rightarrow \) all die

(Also avoids dependence on \(d \) via smarter analysis)
Local Computation Algorithm for Luby's answer:

- Previous with $k = \Omega(d \log d)$ gives:

 $O(d \log d)$ round distributed alg outputting

 one of

 \begin{align*}
 \text{live} & - \nu \text{ alive after } \log d \text{ rounds} \\
 \text{in} & - \nu \text{ in MIS} \\
 \text{out} & - \nu \text{ not in MIS for sure}
 \end{align*}

- Using "Parnas Ron" reduction: on input ν:

 Simulate ν's view of computation in $O(d \log d)$ queries to input

 Degree d rounds

 Size of radius $O(\log d)$ ball around ν

 Output whether ν is alive, in or out of MIS

 Subroutine Luby status(ν)

If ν is in/out, we are done!

What if ν is still alive?

To show:

can still figure ν out quickly

given subroutine Luby status
LCA for Mls(v):

if Luby-status(v) is in/out, output it & halt \(3d\) runtime

else (1) do BFS to find v’s connected component \(3d\times \text{size of component}\)

(2) Compute lexicographically 1st Mls \(H’\) to that connected component

(3) output whether v in/out of \(H’\)

• in
• out
• v’s live component

Runtime: need to bound size of live components
Bounding live component sizes:

\[A_v = \begin{cases} 0 & \text{if } v \text{ survives all rounds} \\ 1 & \text{otherwise} \end{cases} \]

\[B_v = \begin{cases} 1 & \text{if } \# \text{rounds s.t. } r \text{ picks self or no } w \in N(r) \text{ picks self} \\ 0 & \text{otherwise} \end{cases} \]

Claim if \(v \) survives, \# round s.t. \(v \) picks self or no \(w \in N(r) \) picks self

\[\text{independent for } v \text{ and } \bar{v} \text{ at distance } 2 \]

Distance 2: Survival of both \(v \) and \(\bar{v} \) depends on whether \(w \) picked self

\(\Rightarrow \) not independent

Correction: \(A \) \(W \), if all nodes in \(W \) survive then

\[\# \text{round s.t. any node } v \text{ in } W \text{ picks self or no } w \in N(v) \text{ picks self} \]

Note: (1) survival of \(v \) can depend only on coin tosses of \(W \)'s within distance 2 of \(v \)

\[\Rightarrow \leq d^2 \text{ other } B_w \]'s \]
Note (2):
Survival of \(v \) is "rare" over \(c \cdot \log d \) rounds

\[
\Pr \left[\text{round } k \text{ s.t. } v \text{ picks self \& no } w \in N(v) \text{ picks self} \right]
\leq \left(1 - \frac{1}{4d}\right)^{c \cdot \log d}
\]

\[
\leq \frac{1}{8d^3}
\]

Notes (1) + (2) \implies
Survival "rare" + "\& independent"

\implies good behavior: surviving nodes in small connected components

\[\text{Surviving} \]

\[\text{NO} \]

\[\text{MAYBE} \]
Why can't we say anything about complete graphs?

Component of size k survives

1. $\binom{n}{k}$ components $\leq n(4d^3)^k$ for deg-d graphs
2. Survival within or without of component not independent
 \uparrow
lots of "dependencies"
Claim: After $O(\log d)$ rounds, connected components of survivors are of size $\leq O(\text{polylog} d \cdot \log n)$.

\Rightarrow can use brute force!

Proof of Claim:

Idea:

1. Any connected component that is large has lots of nodes that are independent (distance ≥ 3).
2. These independent nodes are unlikely to simultaneously survive.

Let $H^{(3)} \leftarrow$ graph such that nodes $\sim B_v$, edges $\sim B_v + B_w$ s.t. v and w are independent. Let $H^{(3)}$ be a distance = 3 in G.

$$\deg(H^{(3)}) \leq d^3$$

Observe: # connected components of size w \leq # size w subtrees of $H^{(3)}$.

Why? Map each connected component C to arbitrary spanning tree of C.

Mapping is 1-1 (note that each component could have many spanning trees).
Theorem: \(n \) size \(w \) trees in \(H^{(3)} \) \(\leq n \left(\frac{4d^3}{w} \right)^w \)

Why?

\# nonisomorphic trees on \(w \) nodes \(\leq 4^w \)

Process:
- choose root
- choose tree
- choose placement within \(H^{(3)} \)

\(\# \) choices:
\(n \cdot 4^w \cdot (d^3)^w \)

Total \# choices:
\(n \cdot 4^w \cdot (d^3)^w \)

Note: Independent set in \(H^{(3)} \) \(\Rightarrow \) Is nodes dist 3 in \(G \) (pairwise)

\(\Rightarrow \) \(Pr[\text{ind set I survives in } G] \leq \left(\frac{1}{8d^3} \right)^{|I|} \)

\(\Rightarrow \) \(Pr[\text{specific size } w \text{ tree survives in } H^{(3)}] \leq \left(\frac{1}{8d^3} \right)^w \)

\(\Rightarrow \) \(Pr[\exists \text{ size } w \text{ tree surviving in } H^{(3)}] \leq n \left(\frac{4d^3}{w} \right)^w \)

\(\Rightarrow \) for \(w = \Theta(\log n) \),

\(Pr[\exists \text{ size } w \text{ tree surviving in } H^{(3)}] \leq \frac{1}{n} \leq \frac{1}{d^w} \)
\[\Pr \left[\text{exists size } w(d^3) \text{ component surviving in } G \right] \leq \frac{1}{n} \]

So, unlikely to have any surviving component of size \(\Omega(d^3 \log n) \).