Lecture 19:

LCAs for Spamers
Graph Spanners:

Given $G = (V, E)$

def. k-spanner is subgraph $H = (V, E')$ s.t.

$\forall u, v \in V$ \quad $\text{dist}_H(u, v) \leq k \cdot \text{dist}_G(u, v)$

Known $\forall G$, $\exists (2k-1)$-spanner with $O(n^{1+k})$ edges $\exists 3$-spanner with $O(n^{3/2})$ edges

Optimal? yes for $k=2, 3, 5$

Erdos girth conjecture \Rightarrow yes for all k

Equivalent Characterization:

$\forall (u, v) \in E$, \exists path from u to v in H of length $\leq K$

Question: LCA which given graph G provides queries to spanner H?

How is G given? Assume following probes:

neighbor: given u, i output i^{th} nbr of u

adjacency: given (u, v) output whether $(u, v) \in G$

output: j if $(u, v) \in G$ + "no" if $(u, v) \notin G$

degree: given u output $\deg(u)$
LCA for 3-spanner with $\tilde{O}(n^{3/2})$ edges + $O(n^{3/4})$ time/query.

First, a thought:

Pick centers randomly
if u, v both connected
to same center, can
delete edge (u, v)

$\text{dist}(u, v) = 1$ but $\text{dist}_H(u, v) = 2$ (ok, since $k = 3$)

but: will we delete enough edges this way?
Can we figure out that u, v connected to same center
in sublinear time?

Today: will assume max degree is $n^{3/4}$
- still nontrivial
- general case builds on ideas today
Global construction of 3-spanners with $\tilde{O}(n^{3/2})$ edges

[Baswana Sen 07]

Note: ave degree $= n^{1/2}$

Construction of H: (not sublinear time)

- Pick $S \subseteq V$ s.t. $|S| = \Theta(\sqrt{n} \cdot \log n)$ \leftarrow each node tosses coin with prob $\Theta(\frac{\log n}{\sqrt{n}})$

"cluster Centers" \leftarrow each one defines a "cluster"

- w.h.p., $\forall u \in V$ s.t. u has degree $\geq \sqrt{n}$, then u adjacent to at least one $v \in S$

u chooses one $v \in S$ (arbitrarily) to be its "cluster center"

$\tilde{O}(n^{3/2})$ total

- Constructing H:
 1. if u low degree ($\leq \sqrt{n}$), add all edges (u,v)
 2. if u high degree ($\geq \sqrt{n}$), add edge to its cluster center
 3. if u high degree ($\geq \sqrt{n}$), add one edge to every adjacent cluster

$\leq n \cdot \sqrt{n}$

$\leq n \cdot \log n$

$\leq n \cdot \log n$ at clusters
Example:

Clusters

Stretch?

- For u, v in same cluster, both u and v keep edge to center c rolled $H(u, v) = 2$

- For u, v in different clusters:

\[
\text{if } (u, v) \notin H \text{ then must have kept some other edge } (u, w) \text{ s.t. } w \in v's \text{ cluster.}
\]

So either $w = c_v$ or $(w, c_v) \in H$

\[
\Rightarrow (u, w), (w, c_v), (c_v, v) \in H
\]

\[
\Rightarrow \text{dist}_H(u, v) = 3
\]
Local Algorithm for constructing H:

Given $(u,v) \in E$, is $(u,v) \in H$?

Rule (1): if u or v low degree, yes! 2 degree probes \checkmark

Rule (2): if v is u's center (or if u is v's center)

Rule (3): if (u,v) is "chosen" edge from u to v's cluster (or v to u's cluster)

How do we know?

Naive idea: "First center Attempt"

u chooses 1^{st} center on its incidence list

$u \rightarrow w_1, w_2, ..., w_k, \ldots, w_{m-1}, w_m, \ldots$

u chooses 1^{st} connection to each cluster in incidence list

$u \rightarrow w_1, w_p, ..., w_k, \ldots, w_l, \ldots, w_m$
Implementing rule 2:

- On query \((u,v)\): if \(v\) the chosen center of \(u\)?
 - Check if \(v\) is a center (check \(v\)'s coin toss)
 - Check if any node preceding \(v\) on \(u\)'s incidence list is a center

Runtime: \(O(\text{max degree})\)

Better runtime: \(O(n)\) by observation

Implementing rule 3:

- On query \((u,v)\): does \(v\) introduce \(u\) to a new cluster?
 - Find \(v\)'s cluster center \(C_v\) \(O(n)\)
 - Check all nbns of \(C_v\) + check if come earlier in \(u\)'s incidence list?

Not sublinear for \(\Delta = \Delta(n)\) (regime of interest)
Improved Plan: "Multiple Centers"

Rule 2: \(u \) chooses all centers in first \(\sqrt{n} \) locs of incidence list \(C_u = \{ v \mid v \text{ is in first } \sqrt{n} \text{ locs of } u \text{'s incidence list} \} \)

Observation: \(\forall u \text{ s.t. } \deg(u) \geq \sqrt{n}, 1 \leq |C_u| \leq \log n \)

How does this change things?

- degree from Rule 2 "keep all edges between \(u \) and \(C_u \)"
 - \(O(\log n) \) per node
 - \(\Rightarrow O(n \log n) \) total [before it was \(O(n) \) total]

- Verifying if \(v \in C_u \):
 - adjacency probe \((u, v)\) returns \(v \)'s loc in \(u \)'s list
 - in one step
 - check if \(v \) is a center by looking at random \(\sqrt{n} \)s

SAVINGS!!!

- computing \(C_u \):
 - check 1st \(\sqrt{n} \) locs in \(u \)'s list
to see which are centers

Rule 3: \(u \) chooses first edge \(v \) which introduces \(u \) to \(v \)'s cluster

How to determine?

1. Compute \(C_v \): \(\tilde{\nu}n \) neighbor probes

2. For each \(w \in C_v \), test if \(v \) "introduces" \(w \) to \(u \):

 For each nbr \(x \) of \(u \) until reach \(v \):

 Find \(C_x \)

 Cross off \(C_x \cap C_v \)

 If any \(w \in C_v \) not crossed off

 Then keep \((w,v) \) in \(H \)

 Else discard \((w,v) \)

Total: \(O(\Delta \cdot \tilde{\nu}n \cdot \log n) \)

Bad!!
Smarter method to determine if \(v \) "introduces" closer to \(u \):

- Compute \(C_v \)

- For each \(n \)br \(x \) of \(u \) up to \(v \):
 - \(\text{deg}(u) \) probes
 - For each \(w \in C_v \),
 - if \(w \) is center of \(x \)
 - cross \(w \) off
 - If any \(w \in C_v \) not crossed off
 - Keep \((u,v) \) in \(H \)
 - else discard.

Total:
\[
\sqrt{n} + \text{deg}(u) \times \log n \times 1
\]
\[
= O(\text{deg}(u) \cdot \log n)
\]

If \(\max_{u} \text{deg}(u) \leq n^{3/4} \), we are done!!