Lecture 4:

Distributed Algorithms vs. Sublinear time Algorithms
- Vertex Cover

Simulating Greedy Algorithms in Sublinear time
- maximal matching
Distributed Algorithms vs. sublinear time algorithms on \textit{SPARSE} graphs

\[\text{max degree } \leq d \]

Again, \textit{Sparse graphs}:

- \text{max degree } \leq d
- \text{adj list representation}

\[\text{A problem to solve:} \]

\underline{Vertex Cover}

\[V' \subseteq V \text{ is } "\text{Vertex Cover}\ (VC)" \text{ if } \forall \ (u,v) \in E \]

either \(u \in V' \) or \(v \in V' \)

\underline{VC Question:} What is \text{min size of VC}?

\[\text{Note: in } \text{deg } \leq d \text{ graph, } \text{VC} \leq \frac{m}{d} \text{ since each node can cover } \leq d \text{ edges} \]

\(\text{VC is NP-complete, but there is a polytime } 2\text{-multiplicative approximation} \)

\text{Can you approximate VC in sublinear time?}

- multiplicative: \text{no!} graph with no edges \(|\text{VC}| = 0 \)
- graph with 1 edge \(|\text{VC}| = 1 \)

additive: hard! need some mult error
- computationally hard to approx to better than 1.36 factor (maybe even \(2 \))

Combination?
The document contains a mathematical definition and some text about distributed algorithms. Here is the transcription:

Definition: \(\hat{y} \) is \((a, \epsilon)\)-approximation of solution value \(y \) for minimization problem if

\[
y \leq \hat{y} \leq ay + \epsilon
\]

(Analogous definition for maximization problems)

Some Background on Distributed Algorithms

- **Network**
 - processors \(\geq \) max degree \(d \) known to all
 - links

- **Communication round**
 - nodes perform computation on (input bits, history of received msgs, random bits)
 - nodes send messages to neighbors
 - nodes receive messages from neighbors

Vertex Cover problem for distributed networks: Let some other graph

- Network graph = input graph (i.e., network computes on itself)
- at end, each node knows if in or out of VC (doesn't know about others necessarily)

Main insight on why fast distributed \(\Rightarrow \) sublinear time: In k-round algorithm, output of node \(v \)

- only depends on nodes at distance \(\leq k \) from \(v \), at most \(d^k \) of these!
can simulate V's view of distributed computation in $\leq d^k$ time. Figure out if v is in or out of VC.

Comment: If algorithm is randomized, v needs to know random bits (or be able to construct) of all d^k nbors. τ must be consistent.

Fast distributed alg \Rightarrow "oracle" which tells you if v is in VC.

But are there fast VC distributed algorithms?

YES, will see some soon.

Often called "local distributed algorithm".

How do you use this to approximate VC in sublinear time?

Parnas-Ron framework:

Sample nodes of graph $V_1 \ldots V_r$ for each V_i, simulated distributed algorithm to see if $V_i \in VC$.

Output $\frac{\#V_i's \ in \ VC}{r}$ gives $\pm n$ additive approx of VC which in turn is a c-multiplicative approx of ϵ.

Runtime $O(r \cdot d^{k+3}) \approx O(\frac{c}{\epsilon^2} \cdot d^4)$ (where K = # rounds of distributed alg $\backslash d$ = max degree of network).

Proof of correctness Chernoff/Hoeffding bounds.
Simulating v_i’s view of a k-round distributed computation:

Round 0:
- Each node sends msg based on output + random bits
- Each node gets msg from each nbr which is based on their input, randombit

Round 2:
- Each node sends msg based on nbrs info up to round 1
- Each node gets msg based on nbrs + what they saw for input, randombit
- Each node receives msg based on nbrs + nbrs of_nbrs
A fast distributed algorithm for VC:

1. \(i = 1 \)
2. While edges remain:
 - remove vertices of degree \(\geq d/2 + \text{adjacent edges} \)
 - update degrees of remaining nodes
 - increment \(i \)

Output all removed nodes as VC

#rounds: \(\log d \)

Example:

\(d = 8 \)

Is it a VC?

- No edges remain at end
- All removed along with some adjacent vertices
Is it a good approximation?

Let \(\Theta \) be any \(\min \) VC of graph

Thm \[|\Theta| \leq \text{output} \leq (2\log d + 1) |\Theta| \]

since output is VC to prove

Proof

Claim: each iteration adds \(\leq 2|\Theta| \) new nodes to output VC.

Why?

Observation: at \(i \)th iteration

1) all nodes in graph have degree \(\leq \frac{d}{2^{i-1}} \)
2) all removed nodes have degree \(\geq \frac{d}{2^i} \)

Let \(X \in \Theta \) removed at iteration \(i \)

not in \(\Theta \)

note all edges touching \(X \) must also touch \(\Theta \) at other end

why? \(\Theta \) is a VC.
edges touching X:
\[
\geq \frac{d}{2^d} \cdot 1 \geq 1
\]

since \(\text{deg} = \frac{d}{2^d} \)

\[
\leq \frac{d}{2^{d-1}} |\Theta|
\]

since each edge has endpt in Θ,

ey each node in Θ has \(\text{deg} \leq \frac{d}{2^{d-1}} \)

\[
\Rightarrow \frac{d}{2^d} |X| \leq \frac{d}{2^{d-1}} |\Theta|
\]

\[
\Rightarrow |X| \leq 2 |\Theta|
\]

\[\text{end pf of claim}\]

since $\leq \log d$ rounds,

\[
\text{output} \leq |\Theta| + (2 \log d) |\Theta| = (2 \log d + 1) |\Theta|
\]

\[\text{end pf of 7}\]

Gives $O(\log d, \varepsilon)$-approx in $d O(\log d)$ queries.

Can get $(2, \varepsilon)$-approx in $d O(\log \varepsilon)$ queries.
Sublinear Time Approximation Algorithms:

- Estimating size of maximal matching in degree bounded graph

Why?

- Relation to Vertex Cover
 - $VC \geq MM$ for each edge in matching, at least one endpoint must be in VC, edges are disjoint
 - $VC \leq 2MM$ put all MM nodes in VC, if an edge not covered, then violates maximality

- A step towards approx maximum matching

Note: If degree, maximal matching $\geq \frac{n}{d}$ to see this, run greedy algorithm

Greedy Sequential Matching Algorithm:

$M \leftarrow \emptyset$

$\forall e = (u,v) \in E,$

if neither u or v matched, add e to M

Output M

Observe:

M maximal, since if $e \notin M$ either u or v already matched earlier

(output depends only on ordering of input edges)
Oracle Reduction Framework

Assume given deterministic "oracle" $\theta(e)$ which tells you if $e \in M$ or not in one step.

- $S \subseteq S = \frac{n}{\alpha s}$ nodes chosen iid.

- $\forall v \in S$
 $X_v = \begin{cases} 1 & \text{if any call to } \theta(v,w) \text{ for } w \in N(v) \text{ returns "yes"} \\ 0 & \text{otherwise} \end{cases}$

- Output $\frac{n}{\alpha s} \sum_{v \in S} X_v + \frac{\varepsilon}{2} \cdot n$

Since 2 nodes matched for each edge in M makes an underestimate unlikely

Behavior of output: Why does it work?

$|M| = \frac{1}{\alpha} \sum_{v \in V} X_v$

$E[|\text{output}|] = E\left[\frac{n}{\alpha s} \sum_{v \in S} X_v \right] + \frac{\varepsilon}{2} \cdot n$

$= \frac{n}{\alpha s} \sum_{v \in S} E[X_v] + \frac{\varepsilon}{2} \cdot n$ (but $E[X_v] = \frac{2|M|}{n} = \frac{2|M|}{n}$)

$= \frac{n}{\alpha s} \cdot s \cdot 2\frac{|M|}{n} + \frac{\varepsilon}{2} \cdot n = |M| + \frac{\varepsilon}{\alpha} \cdot n$

$\Pr\left[|\frac{n}{\alpha s} \sum_{v \in S} X_v + \frac{\varepsilon}{2} \cdot n| \geq \frac{\varepsilon}{\alpha} \cdot n \right] \leq \frac{1}{3}$ by additive Chernoff-Hoeffding
Implementing the oracle:

Main idea: figure out "what would greedy do on <formula>"?

Problem: Greedy is "sequential"

Can have long dependency chains

Example:

```
1 2 3 4 5 ... a12
\----\----\----
  a13  a14  a12
```

even if you know the graph is a line, how do you know if edge is odd or even in the order?

How to implement oracle based on greedy?

To decide if \(e \) is in matching,

- need to know decisions for adjacent edges that came before \(e \) in ordering

- do not need to know anything about any edge that comes after \(e \) in ordering since not considered by greedy algorithm before \(e \)

So, if any adjacent before \(e \) in ordering matched

\(e \) is not matched

otherwise \(e \) is matched
How to break length of dependency chains?

assign random ordering to edges

is edge 5 in M?

* recurse on .3
 * recurse on .1
 * no other adjacent edges go
 .1 is matched
 * therefore .3 is not matched
 * no need to recurse on .7 since .5 < .7
 * don't know yet about .5, so recurse on .4
 * recurse on .2
 .8 comes after .2 in order
 so doesn't affect greedy's behavior
 * same for .4
 .50 .2 is matched
 * .4 is not matched
 * .5 is matched
Implementation of oracle: assume ranks re assign to each edge e to check if e ∈ M:

∀ e' neighboring e,

- if \(r_e > r_{e'} \), recursively check e'
- if \(e' \notin M \), return "e ∈ M" and halt
 else continue

return "e ∈ M"

↑ since no e' of lower rank than e is in M

Correctness: follows from correctness of greedy

Query complexity:

\[
\text{Claim } \text{expected # queries to graph per oracle query is } 2^{O(d)}
\]

Claim \(\Rightarrow \) total query complexity is \(\frac{2^{O(d)}}{\varepsilon^2} \)
Proof of Claim

- Consider QueryTree where root node labelled by original query edge, children of each node are edges adjacent to it.

- Will only query paths that are monotone decreasing in rank.

- \(\Pr [\text{given path of length } k \text{ explored}] = \frac{1}{(k+1)!} \)

- \(\# \text{ edges in original graph at dist } \leq k \text{ in tree } \leq d^k \)

- \(E [\# \text{ edges explored at dist } \leq k] \leq \frac{d^k}{(kh)!} \)

- \(E [\text{ total } \# \text{ edges explored}] \leq \sum_{k=0}^{\infty} \frac{d^k}{(kh)!} \)

- \(\leq \frac{e^d}{d} \)

- \(E [\text{query complexity}] \leq d \cdot \frac{e^d}{d} = e^d = o(d^2) \)