Lecture 6:

- Testing
- Planarity
- Minor-Freeness

- Partition
- Oracles
Property Testing

All graphs

ε-close to P

Graphs with property P

Can we distinguish in sublinear time?

$P =$ "planar"

Compromise

Can we distinguish graphs with prop P from far from P?

e.g. G is ε-far from planar if must remove $\geq \varepsilon \cdot d_{\text{max}} n$ edges to make it planar

Today: Test planarity in time independent of n

(but exponential in ε)
Testing H-minor freeness

all graphs have max degree ≤d

def. H is "minor" of G if can obtain H from G via vertex removals, edge removals, edge contractions

G is "H-minor-free" if H not minor of G

G is "ε-close to H-minor-free" if can remove ≤εdεn edges to make it H-minor-free

orb.: G is "ε-far"

• minor closed property P:
 if G ∈ P then all minors of G are in P

Really Cool Theorem [Robertson + Seymour]

Every minor-closed property is expressible as a constant k of excluded minors.

Some minor-closed properties: \(K_{3,3} \) or \(K_5 \), planar graphs, bounded treewidth, ...

Goal: Testing H-minor freeness
Pass H-minor free graphs
Fail if far from H-minor-free
more definitions

\(x \) can be a function of \(E \)

- \(G \) is "\((E, k)\) - hyperfinite" if
 - Can remove \(\leq E n \) edges
 - Remain with connected components of size \(\leq k \)

(i.e., can remove few edges and break up graph into very small components.)

Useful Thm

Given \(H \) constant that depends only on \(H \)

exists \(C_H \) s.t. \(0 < C_H \leq 1 \), every \(H \)-minor free graph of \(\text{deg} \leq d \)

is \((Ed, C_H / C_H) \)-hyperfinite.

(i.e., remove \(\leq Edn \) edges \& components of size \(O(1/C_H) \))

\(\leq E \) fraction

\(\leq E \) fraction

note

Subgraphs of \(H \)-minor free graphs also \(H \)-minor free

\(\Rightarrow \) so also hyperfinite

but only remove \#edges in proportion to \#nodes in subgraph

\(\Rightarrow \) Can "recurse" \& break up further

hyperfinite graphs

\(H \)-minor free graphs
Why is hyperfiniteness useful?

Partition graph G into G'
- only constant-size connected components remain
- removed only few edges ($\leq Ed_n$)
 - if can't do this, G is not H-minor-free

If G' is close to having property, so is G

Constant time
- so test G' by picking random components & seeing if they have the property

Need a "local" (sublinear) way to determine G': For now assume we have "partition oracle" P
(with parameters $\frac{Ed_n}{\eta}$, k)
 - component size fraction edges removed

Input: vertex v
Output: $P[v]$ (v's partition name)

s.t. \forall v \in V
 \begin{align*}
 (1) \ &|P[v]| \leq k \\
 (2) \ &P(v) \text{ connected}
 \end{align*}

If G is H-minor-free
(with prob $\geq \frac{9}{10}$)

$$|\{u \in V \mid \exists (u,v) \in E \mid P(u) \neq P(v)\}| \leq \frac{Ed_n}{4}$$

Easy to test since collection of constant sized graphs!!
Algorithm given partition oracle \(P \):

I. Does partition oracle give partition that "looks right"? e.g. few crossing edges

1. \(A \leftarrow \text{estimate of \# of edges } (u,v) \)
 s.t. \(P(u) \neq P(v) \) to additive error \(\leq \frac{edn}{8} \) with prob of failure \(\leq \frac{1}{10} \)

 - if \(\frac{A}{\frac{3}{8} Edn} \geq \) output "fail" + halt

II. Test random partitions

 - Choose \(S' = O(\frac{1}{\epsilon^2}) \) random nodes \(S \) select "random" partitions

 - if for any \(s \in S \), \(P(s) \geq k \) or \(P(S) \) not \(H \)-minor free, reject + halt

 - size \(k = O(\frac{1}{\epsilon^2}) \)

 - so easy to test

 - Accept

Runtime:

Part I: \(O(\frac{1}{\epsilon^3}) \) calls to oracle

Part II: \(O(\frac{d}{\epsilon^2}) \) calls to oracle to determine \(P(S) \)

\(O(\frac{d}{\epsilon^2}) \) total calls
Analysis (assume oracle P always correct)

* if G is H-minor free:

1) $E[\hat{F}] \leq \frac{Edn}{4}$

Sampling bounds (Chernoff/Hoeffding) $\Rightarrow \hat{F} \leq \frac{Edn}{4} + \frac{Edn}{8} = \frac{3}{8} Edn \Rightarrow$ algorithm doesn't fail at stage I with prob $\geq \frac{9}{10}$

2) $\forall S \subseteq V, P[S]$ is H-minor free

* if G is ϵ-far from H-minor free:

Case 1: P's output doesn't satisfy $|\{ (u, v) \in E : P(u) \neq P(v) \}| \leq \frac{Edn}{2}$

Sampling bounds $\Rightarrow \hat{F} \geq \frac{Edn}{2} - \frac{Edn}{8} = \frac{3}{8} Edn$

\Rightarrow output "fail" with prob $\geq \frac{9}{10}$

Case 2: P satisfies $|\{ (u, v) \in E : P(u) \neq P(v) \}| \leq \frac{Edn}{2}$

$G' \leftarrow G$ with edges in C removed

Note: G' is $\frac{\epsilon}{2}$-close to G

so, if G is ϵ-far from having property, then G' is $\frac{\epsilon}{2}$-far from having property!
Since G' is $\frac{\varepsilon}{2}$-far from H-minor free, it must change $\geq \frac{\varepsilon d n}{2}$ edges, which touch $\geq \frac{\varepsilon n}{2}$ nodes. So, with prob $\geq \frac{\varepsilon}{2}$, pick a node in a component which is not H-minor free.

Remaining Issue:
Implementing partition oracle P

Plan:
1) Define global partitioning strategy (not sublinear time)

2) Figure out how to implement locally (only find partition of given node, not whole solution)
A useful concept—
"Isolated Neighborhoods"

def S is "(δ, k)-isolated neighborhood of node v":

1) $v \in S$
2) S connected
3) $|S| \leq k$
4) # edges connecting $S + \overline{S} \leq \delta |S|$

In hyperfinite graphs, most nodes have (δ, k)-isolated neighborhoods.

Is this obvious?

- G hyperfinite $\Rightarrow \exists$ partitioning
- but will need this to be true about remaining graph in context of algorithm that may find a different partition "step-by-step"

- Luckily, no matter what was removed earlier, we still have an H-minor-free graph so still hyperfinite!
Global Partitioning Algorithm \rightleftharpoons a "mental thought process"

Let \(\Pi_1 \ldots \Pi_n \) be nodes in random order

\(P \leftarrow \emptyset \)

For \(i = 1 \ldots n \) do

- if \(\Pi_i \) still in graph then
 - if \(\exists (S, k) \)-isolated nbhd of \(\Pi_i \) in remaining graph
 - then \(S \leftarrow \) this nbhd
 - else \(S \leftarrow \exists \Pi_i \S \)

\(P \leftarrow P \cup \exists S \S \)

Remove \(S \) + adjacent edges from graph

Does this give a partition with few crossing edges?

- \(S \) s.t. \(S \) is \((8, k)\)-isolated contribute \(\leq 8|S|\) edges which overall \(\leq 8 \cdot n \)

- \(S \) s.t. \(S = \exists \Pi_i \S \) (one node):
 - need to show that not too many of these!

\[\delta = \frac{Ed}{n}, \quad k = \left(\frac{A}{\varepsilon^2} \right)\]
Lemma: if G' is subgraph of a (hyperfinite) graph G s.t. G' has $\geq 8n$ nodes

then \(\leq \frac{\varepsilon}{30} \) fraction of nodes in G' don't have (δ, k)-isolated nbhds, for $\delta = \frac{\varepsilon}{30}$ and $k = \Theta(\varepsilon^3)$

Proof idea:

G is minor free \downarrow

G' is minor free \downarrow

G' is hyperfinite \downarrow

exists partition s.t. most nodes in G' are in (k, δ)-isolated nbhd \downarrow

T_i randomly chosen in G' \downarrow

whp T_i in (k, δ)-isolated nbhd.

So, not too many "singletons"!"
Local Simulation of Partitioning Oracle:

- Input \(v \)
- Assume access to random function \(\Pi(v) \)
 \[\Pi : v \rightarrow [n] \]
- Output \(P[v] \)

- Recursively compute \(P[w] \) for all \(w \) s.t.
 \[\Pi(w) < \Pi(v) \]
 \[w \text{ is distance } \leq 2k \text{ from } v \]

- If \(\exists w \text{ s.t. } v \in P[w] \)
 then \(P[v] = P[w] \)
 else look for \((k, \delta)\)-isolated nbhd of \(v \)
 (ignoring nodes which are in \(P[w] \) for smaller ranked \(w \)'s)
 if find one, \(P[v] \leftarrow \text{this nbhd.} \)
 else \(P[v] \leftarrow \emptyset \)

Query Complexity:

\[d^{\Theta(k)} \]

using analysis from last time + \(k \times \Theta(\varepsilon^3) \)

but can do much better:

Currently \(d^{O(\log^3(1/\varepsilon))} \) is possible.