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1 Outline

The following topics were covered in class:

• Overview of the course.

• Diameter of a point set.

• Estimating the number of connected components of a graph.

2 Overview of the course

The high-level goal of sublinear time algorithms is to answer questions without reading or processing
the entire input. Therefore, we have to make a compromise which usually means introducing an error
parameter along with a probability that your approximation holds. Hence, algorithms in this field
are usually randomized. In addition to randomized algorithms, the field of sublinear time algorithms
also intersects with approximation algorithms, parallel algorithms, distributed algorithms, statistics and
many other fields.

The complexity of algorithms is measured in terms of the number of queries that we request from
the input data, such as querying an adjacency matrix or asking for a sample from a distribution. This
general framework can be applied to a variety of different types of inputs. Some examples of inputs and
the properties of these inputs that we can ask questions about are shown in Table 1. We will cover most
of the things in Table 1 in due time.

Type of input Properties that we can ask questions about

Graphs Diameter, # of connected components, MST, bipartiteness, clusterability, · · ·

Functions Monotonicity, convexity, linearity, juntas, · · ·

Distributions Uniformity, independence, entropy, monotonicity, · · ·

Table 1: Topics that we might cover in the course.

Let’s begin by discussion the only non randomized algorithm in this course.

3 Diameter of a point set

Consider m points in some metric space whose pairwise distances are given in the matrix D. That is,
Dij is the distance between point i and point j. Since we are in a metric space, we assume the following
things about D:

• D is symmetric: Dij = Dji for all i, j.

• D satisfies the triangle inequality: Dij ≤ Dik + Dkj for all i, j, k.

Our goal is to find the diameter of this point set, that is, we want to find the maximum entry in the
matrix D. Moreover, we want to find the points that achieve this diameter. We won’t be able to do
this exactly but we will instead give a 2-approximation by using the fact that our points lie in a metric
space. Our algorithm is the following.
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Algorithm 1: Diameter-Estimator

Input : m points in a metric space, matrix D of all the pairwise distances.
Output: Points k, ` and distance Dk,`.

1 Pick k arbitrarily from {1, · · · ,m} ;
2 Pick ` that maximizes Dk,`;
3 Return k, `,Dk,`

Theorem 1 Diameter-Estimator returns a 2-approximation to the actual diameter.

Proof Consider the points k and ` outputted by Diameter-Estimator. Suppose that the actual
diameter is achieved by points i and j. Then by the triangle inequality, we have

Dij ≤ Dik + Dkj = Dki + Dkj ≤ 2Dk,`,

as desired.

k `

i

j

Figure 1: We use the triangle inequality on the points k, i, j in the proof of Theorem 1.

Note that the size of the input is n = m2 since D has m2 entries. Furthermore, the query complexity
of Diameter-Estimator is O(m) since we examine one row of D. Therefore, the complexity of our
algorithm is O(

√
n), which is sublinear in the input size.

4 Number of connected components

We now move onto our second topic which is to estimate the number of connected components of a
graph. Given an input G = (V,E) with |V | = n and an error parameter ε > 0, our goal is to output an
estimate for c, the number of connected components of G. Our complexity will be measured in terms of
the number of queries that we make to the graph.

We will give an algorithm that outputs an estimate c̃, and we will show that we get an additive error
of at most εn, that is, |c − c̃| ≤ εn (with probability at least 3

4 ). To motivate the algorithm, we first
introduce a new notation.

Definition 2 For v ∈ V , define nv to be the number of nodes in the connected component of v.

The key observation is if A ⊆ V is a connected component, we have
∑
v∈A

1
nv

= 1. Thus,∑
v∈V

1

nv
= # of connected components = c. (1)
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Therefore, we can use Eq. (1) to calculate c. Our strategy is to first get a good approximation for nv for
a fixed v. The guiding principle behind this estimate will be that if nv is small, the connected component
that v belongs to is small and therefore we will incur small query complexity to just search over the
entire connected component of v.

On the other hand, if nv is large, we know 1
nv

is small so we will incur a small error by approximating

nv. We then approximate
∑
v∈V

1
nv

using our approximation for nv. Our guiding principle here will be

that we can sample vertices at random to approximate the average value of 1
nv

. Towards this goal, we
make the following definition.

Definition 3 n̂v = min{nv, 2/ε}.

Again, the intuition behind this definition is that we want to separate the cases that nv is small versus
large. We now show that this estimate incurs us a very small loss in Eq. (1).

Lemma 4 The following estimate holds for all vertices v ∈ V :

1

n̂v
− 1

nv
≤ ε

2
.

Proof If nv ≤ 2
ε , we have n̂v = nv so the claim immediately follows. Otherwise, nv >

2
ε and n̂v = 2

ε
and

0 ≤ 1

nv
≤ 1

n̂v
=
ε

2

so the conclusion also follows.

We formalize our heuristics and present an algorithm to compute n̂v.

Algorithm 2: n̂v-Calculator

Input : Graph G, vertex v, ε
Output: n̂v.

1 Initialize Breadth-first search (BFS) from v ;

2 while # of unique visited nodes by BFS is < 2
ε do

3 Continue BFS ;
4 if BFS finishes then
5 Return number of visited nodes and abort

6 Return 2
ε

Note that the query complexity of this algorithm is O(1/ε2). This is because we visit at most O(1/ε)
unique vertices and for each of them, we visit at most O(1/ε) of their neighbors (some of the neighbors
might be repeated, think of a clique of size O(1/ε)).

We now proceed to estimate the sum in Eq. (1). We first define a similar quantity

ĉ =
∑
v∈V

1

n̂v
. (2)

From Lemma 4, we know that computing ĉ gives us a desirable approximation for c, the true number
of connected components. However, simply estimating n̂v for each v ∈ V is too costly (this is sublinear
time algorithms after all) so we must do something clever. Fortunately, we don’t have to be too clever
since computing ĉ is the same as computing the average value of 1/n̂v. This last task can be easily
handled by standard concentration bounds. Therefore, our task is to now find an ‘good’ approximation
for ĉ, which will be denoted as c̃, and use Lemma 4 to argue that we also have a good estimate for c.
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Algorithm 3: c̃-Calculator

Input : Graph G, ε, b
Output: c̃.

1 r ← b/ε3 ;
2 Sample r vertices v1, · · · , vr from G uniformly with replacement ;
3 Compute n̂vi for all 1 ≤ i ≤ r using n̂v-Calculator ;
4 Return c̃ = n

r (
∑r
i=1 1/n̂vi)

We present an algorithm to calculate c̃ in Algorithm 3. Note that from the discussion from Algorithm
2, the query complexity of Algorithm 3 is O(1/ε5). We proceed to show that c̃ from Algorithm 3 is a
‘good’ approximation to ĉ.

Lemma 5 Let c̃ be the output of Algorithm 3 (for some constant b to be specified later). Then

P[|ĉ− c̃| ≥ εn/2] ≤ 1

4
.

We need the following variant of Chernoff bounds to prove Lemma 5.

Theorem 6 (Chernoff) Let X1, · · · , Xr be i.i.d. random variables in the unit interval. Define
S =

∑r
i=1Xi and p = E[Xi]. Then,

P
[∣∣∣∣Sr − p

∣∣∣∣ ≥ δp] ≤ exp
(
−Ω(rpδ2)

)
.

We now prove Lemma 5.

Proof Consider the vertices v1, · · · , vr in Algorithm 3 that are sampled uniformly from G and let c̃
be the output of Algorithm 3. Recall Eq. (2)

ĉ =
∑
v∈V

1

n̂v
.

We wish to upper bound P[|ĉ− c̃| ≥ εn/2]. Note that ĉ ≤ n so

P[|ĉ− c̃| ≥ εn/2] ≤ P[|ĉ− c̃| ≥ εĉ/2] = P
[∣∣∣∣ ĉn − c̃

n

∣∣∣∣ ≥ εĉ

2n

]
.

Now let Xi = 1/n̂vi . It follows that

E[Xi] =
1

n

r∑
i=1

1

n̂vi
=
ĉ

n
.

Furthermore,

1

r

r∑
i=1

Xi =
1

r

r∑
i=1

1

n̂vi
=
c̃

n
.

Now let δ = ε
2 . The Chernoff bound gives us

P
[∣∣∣∣ ĉn − c̃

n

∣∣∣∣ ≥ εĉ

2n

]
≤ exp(−Ω(ĉ/εn)).
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Since
εn

2
≤
∑
v∈V

1

n̂v
= ĉ

by definition, it follows that by picking a suitably large constant for b, we have

P[|ĉ− c̃| ≥ εn/2] ≤ 1

4
,

as desired.

We now combine Lemmas 4 and 5 to prove the main theorem of this section.

Theorem 7 Let c be the number of connected components of G and let c̃ be the output of Algorithm 3.
Then,

P[|c− c̃| ≤ εn] ≥ 3

4
.

Proof By the triangle inequality,

|c− c̃| ≤ |ĉ− c|+ |ĉ− c̃|.

By Lemma 4,

|ĉ− c| =
∑
v∈V

1

n̂v
− 1

nv
≤ εn

2
.

Furthermore, by Lemma 5, |ĉ − c̃| ≤ εn
2 with probability at least 3

4 . Hence with probability at least 3
4 ,

we have
|c− c̃| ≤ εn

2
+
εn

2
= εn,

as desired.

Theorem 7 tells us that our estimate for the number of connected components is off by an additive
factor of at most εn. Interestingly, our overall query complexity is O(1/ε5) (which can be optimized
slightly) which has no dependence on n.

5


