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1 Testing Monotonicity of Distributions

Definition 1 A probability distribution P over [n] is monotone decreasing if P (i) ≥ P (i + 1) for all
1 ≤ i ≤ n− 1.

For the remainder of these notes, we use the term monotone to refer to a distribution that is monotone
decreasing. Our goal will be to develop a monotonicity tester that satisfies the following properties.

• If P is monotone, the tester outputs pass with probability at least 3
4

• If P is ε-far from any monotone distribution, the tester outputs fail with probability at least 3
4

1.1 Birge Decomposition

We now introduce the idea of a Birge Decomposition which will be central to developing a monotonicity

tester. Decompose the domain into l = θ
(

log(εn)
ε

)
∼ θ

(
logn
ε

)
intervals Iε1, . . . , I

ε
l , in order, such that

Iεk has length b(1 + ε)kc. Note that the Birge Decomposition is oblivious in the sense that it does not
depend on the actual distribution being studied.

Definition 2 Given a probability distribution q on [n], we define the flattened distribution q̃ as q̃(i) =
q(Ij)
|Ij | where Ij is the interval in the Birge decomposition that contains i.

The distribution q̃ is constant on each interval of the Birge decomposition. The following result
implies that q̃ is actually a good approximation of q if q is monotone or even just close to monotone.

Theorem 3 (Birge’s Theorem) If q is monotone then ||q − q̃||1 ≤ ε.

Proof We will give a sketch of a proof that gives a bound of ||q − q̃||1 ≤ O(ε) as this will suffice for
our purposes. For an interval Ij in the Birge decomposition, let xj denote the smallest element and yj
denote the largest element. Note that xj+1 = yj + 1. Also, the L1 error between q and q̃ on an interval
Ij is at most

(q(xj)− q(yj))|Ij | ≤ (q(xj)− q(xj+1))|Ij |

We now consider three types of intervals.

• Length 1 intervals

• Short intervals of length |Ij | ≤ 1
ε

• Long intervals of length |Ij | > 1
ε

Let S ⊂ [l] be the subset of indices such that Ij is a short interval and L ⊂ [l] be the subset of indices
such that Ij is a long interval. Note that q and q̃ agree exactly on any length 1 interval. Also, there are
Ω( 1

ε ) intervals of length 1 so for any Ij with |Ij | > 1, the probability that q assigns to any element in Ij
is at most O(ε). Next

||q − q̃||1 ≤
∑
j∈S
|Ij |(q(xj)− q(xj+1)) +

∑
j∈L
|Ij |(q(xj)− q(xj+1))
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We now deal with the first term. Let c = b 1ε c. For each 2 ≤ i ≤ c, let zi be the smallest element in the
first interval of length i. Consider combining all intervals of length 2, all intervals of length 3, and so
on. We can rearrange∑

j∈S
|Ij |(q(xj)− q(xj+1)) = 2(q(z2)− q(z3)) + · · ·+ c(q(zc)− q(zc+1))

= 2q(z2) + q(z3) + · · ·+ q(zc)− cq(zc+1)

Now to deal with the second term, let l0 be the lowest index such that |Il0 | > 1
ε . Note we must have

|Il0 | = c+ 1 and xl0 = zc+1. We rearrange

∑
j∈L
|Ij |(q(xj)− q(xj+1)) = |Il0 |q(xl0) +

l∑
j=l0

q(xj+1)(|Ij+1| − |Ij |)

Combining this with the previous expression,

||q − q̃||1 ≤ 2q(z2) + q(z3) + · · ·+ q(zc) + q(zc+1) +

l∑
j=l0

q(xj+1)(|Ij+1| − |Ij |)

Let si be the total length of all intervals of length i for 2 ≤ i ≤ c. Note si ∼ Ω( 1
ε ). This means there

is a constant C such that si ≥ C
ε for all i. Rearranging the previous expression we get siε

C ≥ 1. Also
|Ij+1| − |Ij | ∼ ε|Ij |. Since the total probability mass of q is 1, we have

q(z3)s2 + · · ·+ q(zc+1)sc +

l∑
j=l0

q(xj+1)|Ij | ≤ 1

Thus,

q(z3) + · · ·+ q(zc) + q(zc+1) +

l∑
j=l0

q(xj+1)(|Ij+1| − |Ij |) ≤

ε

C
(q(z3)s2 + · · ·+ q(zc+1)sc) +O(ε)

 l∑
j=l0

q(xj+1)|Ij |

 ≤ O(ε)

and we immediately get
||q − q̃||1 ≤ 2q2 +O(ε) = O(ε)

Corollary 4 If q is ε-close to monotone then ||q − q̃||1 ≤ O(ε)

1.2 Monotonicity Tester

We are now ready to give an algorithm for testing monotonicity of a distribution q on [n]. Below,
ε′ = 1

poly( 1
ε )

is a parameter that will be set in terms of the desired precision ε.
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Algorithm 1 Monotonicity Tester

Take m ∼ O
(√
n · poly

(
log n, 1

ε′

))
samples from q

for j ∈ {1, 2, . . . , l} do
Uniformity test on Iε

′

j using samples that fall in the interval
end for
if Greater than ε′-fraction of samples are in a failing interval then

Output fail
end if
Compute weights wj to be the fraction of samples in Iε

′

j

if There exists some monotone distribution P such that {w1, . . . , wl} and {P (Iε
′

1 ), . . . , P (Iε
′

l )} are
ε′-close then

Output pass
end if
Output fail

Note that the last step involves solving a linear program on O(log n) variables, which can be done
efficiently. The sample complexity comes from the fact that we need

√
Ii samples in each interval and

there are a total of O
(

logn
ε′

)
intervals.

1.3 Analysis of Monotonicity Tester

We will give an outline of the proof that our tester indeed has the desired behavior. Let ε be the desired
precision parameter.

1.3.1 Distributions that are monotone

• Consider the flattened distribution q̃ with parameter ε′. By Birge’s Theorem, ||q − q̃|| ≤ ε′.

• In general the uniformity test is only guaranteed to pass a distribution that is exactly uniform.
However, we can show that for distributions where the ratio of the maximum and minimum prob-
abilities is at most 2, the uniformity test is likely to pass distributions that are ε′

2 -close to uniform.

• Note we can simply disregard elements whose weight is less than ε
2n . After eliminating such

elements, by monotonicity, there are at most ∼ log n intervals in the partition that do not satisfy
the above property. We can then show that the total weight in such intervals is small.

1.3.2 Distributions that are ε-far from monotone

• If q is likely to pass, then the weights of the Birge intervals {w1, . . . , wl} must be close to the
weights of some monotone distribution q′

• Since almost all of the weight of q must be on Birge intervals where it is close to uniform, we can
correct q to the flattened distribution q′ with small error

1.4 Learning Monotone Distributions

We now approach monotone distributions from a slightly different perspective. The question we ask is
given a distribution q that is promised to be monotone, how many samples do we need to construct an
estimate q′ such that ||q − q′||1 ≤ ε.

It turns out that O( 1
ε3 log n) samples suffice as by Birge’s theorem, it suffices to estimate the flattened

distribution q̃ which we can do by simply counting the fraction of samples in each Birge interval.
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