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1 Testing Monotonicity of Distributions

Definition 1 A probability distribution P over [n] is monotone decreasing if P(i) > P(i + 1) for all
1<i<n—-1.

For the remainder of these notes, we use the term monotone to refer to a distribution that is monotone
decreasing. Our goal will be to develop a monotonicity tester that satisfies the following properties.

e If P is monotone, the tester outputs pass with probability at least %

e If P is e-far from any monotone distribution, the tester outputs fail with probability at least %

1.1 Birge Decomposition

We now introduce the idea of a Birge Decomposition which will be central to developing a monotonicity
tester. Decompose the domain into [ = 6 (@) ~ 0 (10%) intervals I, ..., I}, in order, such that

I¢ has length [(1 + €)*|. Note that the Birge Decomposition is oblivious in the sense that it does not
depend on the actual distribution being studied.

Definition 2 Given a probability distribution q on [n], we define the flattened distribution q as q(i) =

al;)

] where I; is the interval in the Birge decomposition that contains i.
J

The distribution ¢ is constant on each interval of the Birge decomposition. The following result
implies that ¢ is actually a good approximation of ¢ if ¢ is monotone or even just close to monotone.

Theorem 3 (Birge’s Theorem) If g is monotone then ||q — q||1 < e.

Proof We will give a sketch of a proof that gives a bound of ||g — §||1 < O(e) as this will suffice for
our purposes. For an interval I; in the Birge decomposition, let x; denote the smallest element and y;
denote the largest element. Note that zj11 = y; + 1. Also, the L! error between ¢ and ¢ on an interval
I; is at most

(q(z5) — a1 < (q(z5) — q(zj1)) |15
We now consider three types of intervals.
e Length 1 intervals
e Short intervals of length |I;| < 1

e Long intervals of length |I;| > %

Let S C [I] be the subset of indices such that I; is a short interval and L C [I] be the subset of indices
such that I; is a long interval. Note that ¢ and ¢ agree exactly on any length 1 interval. Also, there are
Q(%) intervals of length 1 so for any I; with |I;| > 1, the probability that ¢ assigns to any element in I,
is at most O(e). Next

lla —dll < D 1l(ale) = alwjen)) + D 1l (a(x;) = alzjr))

JES JjeL



We now deal with the first term. Let ¢ = [1]. For each 2 < i < ¢, let z; be the smallest element in the
first interval of length ¢. Consider combining all intervals of length 2, all intervals of length 3, and so
on. We can rearrange

> LI g(xs) = a(ji1)) = 2(q(22) — q(23)) + -+ + ca(ze) — q(ze11))
jes
=2q(22) +q(z3) + -+ q(zc) — cq(zc41)

Now to deal with the second term, let Iy be the lowest index such that |[;,| > % Note we must have
[I,] = ¢+ 1 and x;, = z.4+1. We rearrange

l

DIl a(e) = a(wi0) = 1 gla,) + Y a(@je) (L] = |15])
jeL 7=lo

Combining this with the previous expression,

l

llg—dllr < 24(22) + q(z8) + -+ + a(z) + a(ze1) + Y a(@jr0) (|| = L))
Jj=lo

Let s; be the total length of all intervals of length i for 2 < ¢ < ¢. Note s; ~ Q( ). This means there
is a constant C such that s; > C for all 7. Rearranging the previous expression we get %5 > 1. Also
|Ii+1| — |1;] ~ €|I;|. Since the total probability mass of ¢ is 1, we have

l
q(z3)s2 + - + q(zes1)se + Y (x| ]| <1

j=lo
Thus,

!
q(z3) + -+ 4(ze) + q(zer1) + D alzip) ([l = 1)) <
j=lo
l
(a(z3)s0 + -+ q(ze11)s0) + O(6) | D a(wip)| ] | < O(e)

Jj=lo

Ql e

and we immediately get
llg = dlli < 2g2 + O(e) = O(e)
]

Corollary 4 If q is e-close to monotone then ||q — q||1 < O(e)

1.2 Monotonicity Tester

We are now ready to give an algorithm for testing monotonicity of a distribution ¢ on [n]. Below,

¢ = —L 1~ is a parameter that will be set in terms of the desired precision .

poly(¢)



Algorithm 1 Monotonicity Tester

Take m ~ O (\/ﬁ - poly (log n, 5)) samples from ¢
for j € {1,2,...,1l} do
Uniformity test on I;-/ using samples that fall in the interval
end for
if Greater than €-fraction of samples are in a failing interval then
Output fail
end if
Compute weights w; to be the fraction of samples in I;l
if There exists some monotone distribution P such that {wi,...,w;} and {P(I{),.. .,P(If/)} are
€'-close then
Output pass
end if
Output fail

Note that the last step involves solving a linear program on O(logn) variables, which can be done
efficiently. The sample complexity comes from the fact that we need /I; samples in each interval and

there are a total of O (log/ ) intervals.

€

1.3 Analysis of Monotonicity Tester

We will give an outline of the proof that our tester indeed has the desired behavior. Let € be the desired
precision parameter.

1.3.1 Distributions that are monotone
e Consider the flattened distribution ¢ with parameter €¢’. By Birge’s Theorem, ||q — g|| < €.

e In general the uniformity test is only guaranteed to pass a distribution that is exactly uniform.
However, we can show that for distributions where the ratio of the maximum and minimum prob-

/

abilities is at most 2, the uniformity test is likely to pass distributions that are %-close to uniform.

e Note we can simply disregard elements whose weight is less than 5. After eliminating such
elements, by monotonicity, there are at most ~ logn intervals in the partition that do not satisfy

the above property. We can then show that the total weight in such intervals is small.

1.3.2 Distributions that are e-far from monotone

o If ¢ is likely to pass, then the weights of the Birge intervals {wq,...,w;} must be close to the
weights of some monotone distribution ¢

e Since almost all of the weight of ¢ must be on Birge intervals where it is close to uniform, we can
correct g to the flattened distribution ¢’ with small error

1.4 Learning Monotone Distributions

We now approach monotone distributions from a slightly different perspective. The question we ask is
given a distribution ¢ that is promised to be monotone, how many samples do we need to construct an
estimate ¢’ such that ||g — ¢'||1 <e.

It turns out that O(e%, logn) samples suffice as by Birge’s theorem, it suffices to estimate the flattened
distribution ¢ which we can do by simply counting the fraction of samples in each Birge interval.



