
6.889 Sublinear Time Algorithms April 10, 2019

Lecture 17
Lecturer: Ronitt Rubinfeld Scribe: Yinzhan Xu

1 Outline

Today we covered the following topics:

• Learning and testing Poisson Binomial Distributions.

• Introduction to local computation algorithms.

• An outline for a local computation algorithm of maximal independent set.

2 Poisson Binomial Distributions (PBDs)

The Poisson binomial distribution is the distribution of a sum of independent Bernoulli variables that are
not necessarily identically distributed. More specifically, given a sequence p1, p2, . . . , pn of real numbers
in [0, 1], we define

PBD(p1, p2, . . . , pn) : X =

n∑
i=1

Xi,

where Xis are independent random Bernoulli variables, such that E[Xi] = pi. Note that since pi can be
different for each i, these Xis are not necessarily identically distributed.

Example 1 When pi = 1
2 for every 1 ≤ i ≤ n, PBD(p) is a binomial distribution.

Example 2 Suppose p1 = 1
2 , p2 = 1, and pi = 0 for all i ≥ 3. Then

Pr[PBD(p) = k] =

{
1
2 : k = 1 or k = 2
0 : otherwise

In the remainder of this section, we will compare PBDs with some other families of distributions, and
show two ways to learn PBDs.

2.1 PBDs vs Poisson

We first review the definition of Poisson distributions:

Pois(λ) : Pr[X = k] = e−λ · λ
k

k!
.

Many useful and interesting facts about Poisson distributions are mentioned during the class, but they
are not necessarily related to this lecture.

Fact 3 E[Pois(λ)] = Var[Pois(λ)] = λ.

Fact 4 If Xi ∼ Pois(λi) for i = 1, . . . , n are independent, then

Y =

(
n∑
i=1

Xi

)
∼ Pois

(
n∑
i=1

λi

)
.

1

Surprisingly, the converse of Fact 4 is also true:

Theorem 5 (Raikov’s theorem, [2]) If the sum of two independent random variables is Poisson-
distributed, then so are each of those two independent random variables.

Fact 6 If n is large and p is small enough, then Pois(np) is close to B(n, p).

The following theorem shows that the PBDs are actually pretty close to some Poisson distributions.

Theorem 7 (Le Cam’s theorem, [1]) For any sequence p1, p2, . . . , pn, where each pi is a real number
in [0, 1], ∣∣∣∣∣PBD(p)− Pois

(
n∑
i=1

pi

)∣∣∣∣∣
1

≤ 4

n∑
i=1

p2i .

We omit the proof of Theorem 7. Theorem 7 indicates that Poisson approximation of PBDs is pretty
good, but not arbitrarily good: the `1 distance is determined by p, and we cannot find a Poisson
distribution that is ε-close to PBD(p), for an arbitrary ε.

2.2 PBDs vs Translated Poisson Distribution

Using translated Poisson distribution, we can obtain a better approximation to PBDs. We first define
the translated Poisson distribution TP(µ, δ2): Y = bµ− δ2c+ Z, where Z ∼ Pois(δ2 + {µ− δ2}). Here,
the notation {x} means the fractional part of x, which formally is x− bxc.

The following theorem states that we can approximate PBDs with translated Poisson distribution.

Theorem 8 ([3]) Given a sequence p1, p2, . . . , pn, define µ =
∑
i pi, and δ2 =

∑
i pi(1− pi). Then

∣∣PBD(p)− TP(µ, δ2)
∣∣
1
≤ 2 ·

√∑n
i=1 p

3
i (1− pi) + 2∑n

i=1 pi(1− pi)
.

When each pi is within [c, 1− c] for some constant c, the right hand side of Theorem 8 gives O(n−1/2);
whereas Theorem 7 only gives an O(n) bound.

2.3 Learning and Testing PBDs

In this section, we will describe two methods to learn the PBDs. The first method uses the fact that
PBDs are unimodal, and then reduces the problem to learning monotone distributions. The second
method uses the structural theorem, which classifies all PBDs to two categories. The structural theorem
also implies a way to test PBDs.

In both of these methods, we will use the cover method discussed in the last lecture. For a quick
reminder, if we have an ε-cover C of a set of distributions D, then we can learn p ∈ D using O(1

ε2 log |C|)
samples of p.

2.3.1 The Unimodal Method

Theorem 9 Every Poisson binomial distribution is unimodal over [n]. More specifically, there exists
k ∈ [n], such that the distribution is monotonically increasing in [1, k], and monotonically decreasing in
[k, n].

With Theorem 9, we can construct a cover with reasonable size. The number of possible modal k is
O(n). For each fixed k, the distribution is a combination of two monotone distributions. Since we can

2

construct an ε-cover for monotone distributions of size O(1
εlogn/ε

), we can construct an ε-cover C for

Poisson binomial distributions of size O
(
n ·
(

1
εlogn/ε

)2)
. Thus, there exists an algorithm that takes

O

(
1

ε2
log |C|

)
= O

(
1

ε3
log n · log

1

ε

)
samples.

2.3.2 Structure Theorem

Even though the unimodal method already gives a sublinear time algorithm, the dependency on log n is
not ideal. Also, it does not provide a way to test whether a distribution is PBD. The following theorem
resolves these two issues.

Theorem 10 (Structure Theorem) Every Poisson binomial distribution is ε-close in `1 distance to
a distribution Y in one of the following two families:

• (1
ε -sparse) The support of Y is on an interval of length O(1/ε3).

• (1
ε -heavy Binomial) Y is a binomial distribution on Ω(poly(1/ε)) i.i.d. variables.

Learning using Structure Theorem Still we construct a small ε-cover. In the 1
ε -sparse case, there

are n possible places for the support. Inside the support, we can enumerate all possible probabilities
up to granularity ε4. Thus, the size of the cover would be O(n · (1/ε4)1/ε

3

). For the 1
ε -heavy Binomial

case, there are up to n possible choices for the number of i.i.d. variables, and we can enumerate possible
probabilities of each variables up to granularity O(poly(ε)). Thus, the size of the cover for this case is at
most O(n · poly(1/ε)). The logarithm of the size of the cover would be O(log n · poly(1/ε)), so number
of samples required for learning is O(log n · poly(1/ε)).

High Level Idea for Removing the log n dependency For the 1
ε -sparse case, we can learn the

offset of the interval by a few samples since almost all probability mass is in the interval. After we know
the interval, the size of the ε-cover will not have a factor of n. The log n dependency for the 1

ε -heavy
Binomial case can also be removed, but we did not cover this in lecture.

Testing using Structure Theorem For the 1
ε -sparse case, the effective support size is small, so we

can test the distribution in time polynomial in the support size. For the 1
ε -heavy Binomial, we know

that almost the entire probability mass of this distribution is centered on the middle O(
√
n) elements,

by concentration bound like Chernoff. Therefore, we can test the distribution in O(n1/4) time.

3 Local Computation Algorithm

In this section, we switch to a completely different topic. In previous lectures, we care about problems
that have a large input size, but the output size is usually small. In reality, many problems also have
large output size. In many cases, we don’t need to compute the whole output. This section will introduce
some example problems that fall into this category, describe the model for local computation algorithms,
and outline a locally computable maximal independent set algorithm.

3.1 Examples

Locally Decodable Codes Given a string of bits w, we use some code to encode it to get ENC(w).
The decoding problem is to compute w from ENC(w). In many applications, we don’t need the whole
string w. Instead, we only want to compute a single bit wi. Can we achieve this by only looking at a
small number of encoded bits? The answer is yes by using locally decodable codes.

3

Local Property Reconstruction Suppose the data has some property P, but it was corrupted. Can
we change a small portion of the data so that it satisfies the property again? For instance, suppose
the data was monotone, but εn positions of the data have been modified. We need to change at most
O(εn) places in the data to change it back to monotone. Local Property Reconstruction imposes another
constraint to the problem: to output the new value of a certain data point, we can only look at a small
number of old data values.

Estimating Graph Parameters Many problems fall into this category, like page rank, communities,
dominating set, and maximal independent set. Take dominating set for example. For each node, we
need to output whether it is in the dominating set, by only querying a few other nodes.

3.2 Local Computation Algorithm: a Model

A local computation algorithm (LCA) outputs a bit yi of the output if an index i is queries, and it
probes several bits xj of the input. The queries i1, i2, . . . can happen in either sequential or parallel.

Figure 1: A graphical illustration of the model.

Usually, there can be multiple LCAs that process queries at the same time. One difficulty in this
model is that there can be more than one valid output. For instance, if we query whether some vertex is
in a maximal independent set, we can always answer “yes” to each individual queries, since every vertex
is in some maximal independent set. Therefore, we need some way for all LCAs to have a consistent
view.

One common method to overcome this issue is to share some (short) random strings among all
instances of LCAs at the beginning. Afterwards, each instance needs to compute independently.

3.3 Maximal Independent Set

In this section, we discuss local computation algorithms for maximal independent set of an undirected
graph G = (V,E). The graph is sparse: each vertex has degree at most d. The maximal independent
set I is a subset of V , such that any two vertices in I are not connected, and all vertices in V \ I are
connected to at least one vertex in I.

Unlike maximum independent set, which is NP-complete, it is easy to compute a maximal indepen-
dent set. For instance, we can try to add vertices to I one by one. If a vertex vi is not connected to
any vertex in I, then we add it to I; otherwise, we do not add it to I. This algorithm actually produces
a lexicographically-first maximal independent set. However, we do not expect to have very fast local
computation algorithm to compute the lexicographically-first maximal independent set because of the
following theorem.

4

Theorem 11 Lexicographically-first-MIS is P-complete. That is, if there exists a parallel algorithm of
polylog(n)-depth that computes it, then every problem in P has a parallel algorithm of polylog(n)-depth.

A common way to design a local computation algorithm is to simulate a distributed algorithm. If
there is a k round distributed algorithm for maximal independent set, then the output of a particular
vertex v depends only on inputs and computations of the k-radius ball around v. Since there are at most
O(dk) vertices in the k-radius ball, we can simulate this algorithm in O(dk) probes. Unfortunately, the
best algorithm runs in O(log n) rounds, which yields an O(dc logn) = 2O(log d logn) LCA.

big graph

k-radius ball around v

v

Figure 2: The k-radius ball is small compared to the whole graph.

The main idea for the sublinear time LCA is to use distributed algorithm to “shatter” the graph.
Basically, we want to run a distributed algorithm for a small number of rounds, so that we only need to
consider connected components of polylogn size.

Many distributed MIS algorithms have the following outline:

Algorithm 1: Distributed MIS

1 All nodes start out “live”
2 for each round do
3 Live nodes toss coins
4 Live nodes use coins and interaction with neighbors to decide whether to join MIS
5 If node or its neighbor joined MIS, node “dies”

Usually, Algorithm 1 will repeat until all nodes die, which would require O(log n) rounds. Here, we
will repeat until a constant fraction of nodes die. It turns out we only need O(d) rounds in this case.
In fact, after we run O(d) rounds of a variant of Algorithm 1, we can prove that with high probability,
the remaining “live” connected components are logarithmically small. The proof is delayed to the next
lecture and will use a Beck-like analysis for algorithmic Lovasz Local Lemma.

Now again we can use a sequential execution to simulate the above distributed algorithm. Let
ALIVE(v) be the sequential simulation of v’s local view of distributed algorithm in dO(d) probes. Using
ALIVE(v), we can define the following LCA algorithm.

Algorithm 2: LCA(v)

1 if v’s output is determined by ALIVE(v) then
2 output it

3 else
4 Find v’s small “live” connected component via BFS, by calling ALIVE(∗)
5 Output “yes” if v is in the lexicographically first MIS in this live component

5

The number of times Algorithm 2 calls LCA is at most d times the size of the connected component
of v. Therefore, Algorithm 2 runs in O(dO(d)polylogn) time.

Next lecture, we will prove the size of the “live” connected components are O(polylogn)).

References

[1] Lucien Le Cam et al. An approximation theorem for the poisson binomial distribution. Pacific
Journal of Mathematics, 10(4):1181–1197, 1960.

[2] D Raikov. On the decomposition of poisson laws. In Dokl. Akad. Nauk SSSR, volume 14, pages 9–12,
1937.

[3] Adrian Röllin et al. Translated poisson approximation using exchangeable pair couplings. The Annals
of Applied Probability, 17(5/6):1596–1614, 2007.

6

