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1 Outline

Today we covered the following topics:

• A review of local computation algorithms and maximal independent set.

• A distributed algorithm for maximal independent set (Luby’s Algorithm).

• A local computation algorithm for determining the answer of Luby’s Algorithm.

2 Review of Local Computation Algorithms (LCA) and Maxi-
mal Independent Set (MIS)

2.1 Local Computation Algorithm: a Model

A local computation algorithm (LCA) outputs a bit yi of the output if an index i is queries, and it
probes several bits xj of the input. The queries i1, i2, . . . can happen in either sequential or parallel.

Figure 1: A graphical illustration of the model.

Usually, there can be multiple LCAs that process queries at the same time. One difficulty in this
model is that there can be more than one valid output. For instance, if we query whether some vertex is
in a maximal independent set, we can always answer “yes” to each individual queries, since every vertex
is in some maximal independent set. Therefore, we need some way for all LCAs to have a consistent
view.

One common method to overcome this issue is to share some (short) random strings among all
instances of LCAs at the beginning. Afterwards, each instance needs to compute independently.

2.2 Maximal Independent Set

We are focusing on local computation algorithms for the maximal independent set of an undirected
graph G = (V,E). Note that we are focusing on computing a maximal independent set, not a maximum
independent set (which is NP-complete).
A subset of nodes U ⊆ V is a maximal independent set (MIS) if and only if:
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• ∀u1, u2 ∈ U : (u1, u2) /∈ E (means U is independent).

• @w /∈ U such that U ∪ {w} is also independent (means U is maximal).

3 Distributed Algorithm for Maximal Independent Set: “Luby’s
Algorithm”

Algorithm 1 Luby’s Algorithm

All nodes start out set to “live”
for k rounds in parallel do

Every node v tosses a coin and “selects” self with probability = 1
2d

if v is live and v selects self and no neighbor of v selects itself then
v is added to the MIS
v and its neighbors are removed from the graph (set to “dead”)

For purposes of analyses, we will have nodes continue to flip a coin (and possibly select themselves)
even after they “die”.

If our goal is to “kill” the whole graph then we can make claims about the number of required phases.

Theorem 1 Pr[# phases ≥ 8 log n] ≤ 1
n

Lemma 2 Pr[v adds self to MIS in one round |v is live] ≥ 1
4d .

Proof ∀v that are live:
Pr[v selects self] = 1

2d .

Pr[any w ∈ N(v) selects self] ≤
∑

w∈N(v)
1
2d ≤

d
2d ≤

1
2 . (Where N(v) denotes the set of nodes that

are adjacent to v).
Thus, Pr[v selects self and no neighbor selects self] ≥ 1

2d (1− 1
2 ) = 1

4d .

Corollary 3 Pr[v alive after 4kd rounds] ≤ (1− 1
4d )4kd ≤ e−k.

If we use k = O(log n), by union bound all nodes will die with high probability. Thus, since we do
4kd rounds, we have O(d log n) phases. Note that it is possible to avoid dependence on d using a smarter
analysis.

4 Local Computation Algorithm for Luby’s Answer

A common way to design a local computation algorithm is to simulate a distributed algorithm. If there
is a k round distributed algorithm for maximal independent set, then the output of a particular vertex v
depends only on inputs and computations of the k-radius ball around v. Since there are at most O(dk)
vertices in the k-radius ball, we can simulate this algorithm in O(dk) probes. Unfortunately, the best
algorithm runs in O(log n) rounds, which yields an O(dc logn) = 2O(log d logn) LCA (not sublinear).

We consider running Luby’s algorithm for O(d log d) rounds, with the hope that most (but not all)
nodes will be dead. After the O(d log d) rounds a node will either be live (meaning it may be in the MIS
or it may not), or dead (meaning we already know whether or not it is in the MIS).

Using the “Parnas Ron” reduction, on input v we will simulate v’s view of computation using dO(log d)

probes to input. We will output whether v is still alive, in, or not in the MIS. We call this our subroutine
Lubystatus(v).
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If v is in or out, then we know the answer for our LCA! But we don’t know the answer yet if v is
still alive.

We will use the following LCA for MIS(v):

Algorithm 2 MIS(v)

if Lubystatus(v) returns in or out, return Lubystatus(v) then

else
Do a breadth-first search to find v’s connected component of live nodes
Compute lexicographically first MIS M ′ for v’s connected component
Output whether v is in or out of M ′

In total, this takes O(dO(d log d)×(size of v’s connected component). This is because our most expen-
sive action is the breadth-first search where we call Lubystatus on each node in the connected component.
Thus, we need to bound the size of live components.

4.1 Bounding Live Connected Component Sizes

If a node v survives all rounds, then there is no round such that v picks itself and w ∈ N(v) picks
themselves.

Let d(u, v) denote the minimum distance between two nodes u and v. Note that the survival of any
pair of nodes u, v such that d(u, v) ≥ 3 are independent of each other. This is because the survival of u
only depends on the coin flips of u and nodes in N(u). Similarly, the survival of v only depends on the
coin flips of v and N(v). Since d(u, v) ≥ 3, we know (u ∪N(u)) ∩ (v ∪N(v)) = ∅.

Additionally, the survival of v for c× d log d rounds is rare.

Pr[v survives] ≤ (1− 1
4d )cd log d

≤ 1
8d3 (if we use c ≥ 20).

This gives us some intuition why the size of connected components might be very small. Survival is
very rare, and a large component will have a large set of nodes whose survivals are all independent.

Theorem 4 Let w be the size of the largest connected component of survivors. After O(d log d) rounds,
w ≤ O(polylog(d) log n) with high probability.

Proof Our main idea is that any connected component that is large has many nodes that are indepen-
dent (all distance ≥ 3 from each other). These independent nodes are very unlikely to all simultaneously
survive. However, if we needed to union bound over all sets of nodes of size w, this would be hard.
Instead, we will want a tighter bound for the number of connected components of size w.

Let H(3) be a graph such that two nodes u, v have an edge between them iff d(u, v) = 3 in the original
graph G. Based on this definition, clearly deg(H(3)) ≤ d3. Additionally, any subset of nodes that is an
independent set in H(3) all have independent survivals.

How do we bound the number of connected components of size w in G? Let’s first bound the number
of size w subtrees in H(3).

Lemma 5 The number of size w subtrees in H(3) is ≤ n(4d3)w.

Proof Consider the following process of building a tree:

1. Choose a root. (n choices)

3



2. Choose structure of the tree. Consider the process of choosing the structure. We represent this
with a binary string of length 2(w − 1). At every point, you can choose to go “down” adding a
child (which we represent as a “1”) and “up” going to the parent of the current node (which we
represent as a “0”). Valid shapes never have more 0’s than 1’s in a prefix, and have an equal
number of 0’s and 1’s. This is upper bounded by 4w (4w choices). .

3. Every time we go “down” choose what node we are going to. From our current node, we only have
deg(H(3)) ≤ d3 options ((d3)w total choices).

Thus, in total, we upper bound that there are ≤ n(4d3)w subtrees!

With an independent set I in H(3) of size w, we know that I’s nodes are ≥ distance 3 in G and thus
have independent survival.
⇒ Pr[independent set I survives in G] ≤ ( 1

8d3 )|I|

⇒ Pr[specific size w tree survives in H(3)] ≤ ( 1
8d3 )w

⇒ Pr[∃ size w tree surviving in H(3)] ≤ n(4d3)w

(8d3)w ≤
n
2w

If we use w = O(log n), Pr[∃size w tree surviving in H(3)] ≤ 1
n

⇒ Pr[∃ size wd3 component surviving in G] ≤ 1
n

Thus, it is unlikely to have any surviving component of size Ω(d3 log n)!

Earlier we showed our algorithm runs in O(dO(d log d)×(size of v’s connected component). Thus, we
now know our LCA for MIS runs in O(dO(d log d) log n)!
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