
6.889 Sublinear Time Algorithms April 22, 2019

Lecture 19
Lecturer: Ronitt Rubinfeld Scribe: William Loucks

1 Graph Spanners

Definition 1 Given undirected graph G = (V,E), a k-spanner is a subgraph H = (V,E′) such that E′ ⊆ E
and ∀u, v ∈ V , distH(u, v) ≤ k · distG(u, v)

Equivalently, one could state that ∀(u, v) /∈ H (edges therein), there exists a path from u to v in H of length
less than k, also known as the stretch. We know that optimal (2k − 1)-spanners obtain O(n1+1/k) edges
for k = 2, 3, and 5. Further, assuming the Erdos Girth Conjecture, for all k, there exists G for which any
(2k − 1)-spanner must have O(n1+1/k) edges.

2 LCA for 3-Spanner

Today, we show a 3-spanner with Õ(n3/2) edges and a probe complexity of Õ(n3/4). Note, the complexity
varies based on whether or not one wishes to minimize the query complexity or the number of edges.
We assume the following probes with complexity O(1) to graph G:

1. Neighbor: Given u, i, output the ith neighbor of u

2. Adjacency: Given (u, v), output j if (u, v) ∈ G and where v is the jth neighbor of of u; output “no”
otherwise

3. Degree: Given u, output deg(u)

First, consider a thought: pick a random center and if u and v are connected to the same center, delete the
edge (u, v). Then distG(u, v) = 1 and distH(u, v) = 2, permissible for a 3-spanner.

Figure 1: u and v connected to the same center, can delete (u, v)

However, we may not delete enough edges this way, and it may be difficult to determine – in sublinear time
– that u and v are connected to the same center.

1

2.1 Global Construction of 3-Spanners [Baswana Sen ’07]

Construction of H:

• Pick S ⊆ V such that |S| = Θ(
√
n · log(n)). In other words, each node tosses a coin with bias Θ(log(n)√

n
).

These form the cluster centers.

• With high probability, ∀u ∈ V such that u has degree greater than
√
n, u is adjacent to at least one

center v ∈ S. Ultimately, u chooses only one v ∈ S to be its cluster center.

Further, to construct H we comply with the following rules:

1. If u has low degree (<
√
n), then add all edges (u, v)

2. If u has high degree (≥
√
n), then add edge (u, v) to cluster center

3. If u has high degree (≥
√
n), add one edge to every adjacent cluster

Given the above, step 1 results in at most n ·
√
n edges; step 2 adds at most n edges; and step 3 results in

at most n ·
√
n · log(n) edges. Thus, the overall edge count obtains Õ(n3/2).

Figure 2: Example constructing H given the above rules. Clusters circled for illustration.

Note, for u and v in the same cluster, both nodes kept their edges to the cluster center. Thus, distH(u, v) = 2.
Moreover, for u and v in different clusters: if (u, v) /∈ H, the nodes must have kept some other edge (u,w) such
that w is in v’s cluster. Thus, either w is v’s center, or (u,w), (w, cv), (cv, v) ∈ H yielding distH(u, v) = 3.

2.2 Local Algorithms for Constructing H

Given (u, v) ∈ G, is (u, v) ∈ H?

1. If u or v have low degree, then yes.

2. If u is v’s center, then yes. Equivalently, if v is u’s center, then yes.

3. If (u, v) is a chosen edge from u to v’s cluster or from v to u’s cluster, then yes.

Considering the above, for rule 1, we just use two degree probes. However, implementing rules 2 and 3
require additional effort. We first illustrate a naive approach and then depict a less complex alternative.

A naive first attempt may be to choose the first node, w, which connects to each center in u’s incidence list.
Implementing rules 2 and 3 could then be as follows:

2

Rule 2:

• Check if v is a center

• Check if any node preceding v on u’s incidence list is a center

This results in overall complexity O(max degree), but we can do better. Namely, O(
√
n) by our observation

earlier that if u has degree greater than
√
n, then u is adjacent to at least one center with high probability.

Rule 3:

• Locate v’s cluster center, cv

• Check if any neighbors of cv come earlier in u’s incidence list.

The resultant complexity is O(n), since we take O(
√
n) to ensure cv is the selected neighbor’s center and

Ω(
√
n) to determine if the selected neighbor is earlier in u’s incidence list.

The following are improved plans to test rules 2 and 3:

Improved Rule 2: u chooses all centers in the first
√
n locations of the incidence list:

cu = {v| v is in the first
√
n locations of u’s incidence list and v is a center}

Note, with high probability, 1 ≤ |cu| ≤ log(n) if deg(u) ≥
√
n

Now,

• Check if v is a center

1. Invoke an adjacency query to determine v’s location in u’s incidence list

2. Check if v is a center

• Check the first
√
n locations in u’s list to determine which are centers.

Now, we can use one adjacency probe to determine if u is v’s center and, if needed,
√
n neighbor probes to

find another center.

Improved Rule 3: u chooses the first edge which introduces u to v’s cluster.

• Locate the cluster centers, Cv

• For each neighbor x of u up to v:

– For each w ∈ Cv:

If w is a center of x, then cross off w

– If any w ∈ Cv not crossed off, then keep (u, v) in H

– Else, discard.

In the end, we used
√
n neighbor probes to compute the set of cluster centers. Further, for each neighbor

of u, deg(u), we iterated over the number of cluster centers, O(log(n)), and invoked one adjacency query,
O(1), to determine if any cluster center was the center for a given neighbor. Assuming the max degree to

be O(n3/4), the overall complexity of this implementation to check rule 3 obtains Õ(n3/4).

3

