
6.889 Sublinear Time Algorithms April 24th, 2019

Lecture 20

Lecturer: Ronitt A. Rubinfeld Scribe: Theodore Katz

Topics Covered

• Linear functions, k-linearity

• Communication complexity

• Lower bounds for property-testing linearity, by reduction from communica-

tion complexity

1 Linear Functions (Homomorphisms)

1.1 Defining Linear Functions

Definition 1 A function f is said to be linear if for all x and y, f(x + y) =

f(x) + f(y).

Today, we consider the linearity of functions from bitstrings to bits: f : {0, 1}d →

{0, 1}. We define the “+” operator as bitwise XOR, i.e. a function is linear if for

all x and y, f(x⊕ y) = f(x)⊕ f(y).

Examples:

• f(x) = 0 is linear.

• f(x) = 1 is not linear. Note that for arbitrary x and y, f(x ⊕ y) = 1 but

f(x)⊕ f(y) = 1⊕ 1 = 0.

1

• Given any bitvector b, f(x) =
d⊕

i=1

xibi (the dot product of x and b) is linear.

In fact, this encompasses all linear functions over this domain, range, and

“+” operator.

Fact 2 Linear functions are parity functions

A function f is linear iff f(x) =
⊕
i∈S

xi for some set S ⊆ [d]. Equivalently, f is

linear iff f(x) =
d⊕

i=1

xibi for some bitvector b ∈ {0, 1}d.

1.2 k-linearity

Definition 3 k-linearity

Given an integer k, a function f is said to be k-linear if f is linear, and f

depends on exactly k specific bits of the input. Equivalently, f is k-linear iff

f(x) =
⊕
i∈S

xi for some set S ⊆ [d] such that |S| = k.

2 Testing for Linearity

Given query access to a function f : {0, 1}d → {0, 1} (with domain size n = 2d),

our goal is to distinguish the case where f is linear from the case where f is ε-far

from linear.

Definition 4 ε-far from linear

A function f is said to be ε-far from another function g if their output differs

on at least ε fraction of possible inputs. A function f is said to be ε-far from linear

if for all linear functions g, f is ε-far from g. Similarly, f is ε-far from k-linear if

for all k-linear functions g, f is ε-far from g. Intuitively, f is ε-far from (k-)linear

if at least εn outputs of f would need to be changed in order to make it (k-)linear.

2

2.1 First Approach: Learning-Based Algorithm

Theorem 5 A property testing algorithm can test for linearity (or k-linearity) in

O

(
d+

1

ε

)
queries.

Consider the following algorithm:

1. Query f on the zero vector. If f(0d) 6= 0, output “fail” and halt.

2. For all i in [d], let ei = f(0i−110i) (i.e. query f on the bitstring with only

the ith bit set). Let S be the set of values i for which ei = 1.

3. For
1

ε
random bitstrings x, check if f(x) =

⊕
i∈S

xi. If this equality holds for

all sampled x, output “pass”; otherwise output “fail”.

Trivially, this algorithm outputs “pass” for all linear functions. If f is ε-far

from linear, with high probability it will find one of the bad inputs and correctly

output “fail”.

This algorithm only tests for linearity, but it can easily be converted to test

for k-linearity by simply failing after step 2 if |S| 6= k.

Runtime: O

(
d+

1

ε

)
queries. Can we remove the dependence on d?

2.2 Non-Learning-Based Algorithm

Theorem 6 A property testing algorithm can test for linearity in O

(
1

poly(ε)

)
queries.

Consider the algorithm that simply picks two random bitstrings x and y, and

verifies that f(x)⊕ f(y) = f(x⊕ y).

With high probability, the algorithm will output “fail” for functions that are

ε-far from linear after O

(
1

poly(ε)

)
trials. (This will be proved in a future lecture.)

However, this algorithm cannot determine whether f is k-linear for a given k.

In fact, the learning-based approach is known to be optimal for testing k-linearity

in terms of the dependence on d.

3

Claim 7 Distinguishing functions that are k-linear from functions that are ε-far

from k-linear requires Ω(d) queries.

We will prove a weaker version of this claim (a lower bound of Ω(k) queries)

by reducing it from another known-hard problem in communication complexity.

3 Communication Complexity (Shared-Randomness

Setting)

In a communication complexity setting, Alice knows an input x = x1...xd and Bob

knows an input y = y1...yd. Alice and Bob can send messages to each other. Their

goal is to compute f(x, y) for some known function f , while minimizing the total

number of bits sent to each other.1

Today, we we are assuming Alice and Bob are in a shared-randomness setting,

so they can both access the same pool of random bits without any communication

cost. Since we are using randomized protocols, we are satisfied with computing

f(x, y) correctly with high probability.

Examples:

• f(x, y) =

(
d⊕

i=1

xi

)
⊕
(

d⊕
i=1

yi

)
(the XOR of all of the bits in x and y) can

be computed with 1 bit of communication. Alice XORs all the bits of x

together and sends the result to Bob, then Bob XORs it with all the bits of

y.

• f(x, y) =

(
d∑

i=1

xi

)
+

(
d∑

i=1

yi

)
(the total number of ‘1’ bits in x and y) can

be computed with O(log d) bits of communication. Alice counts all of the

‘1’ bits in x and sends the result to Bob, then Bob adds it to the number of

‘1’ bits in y.

1In communication complexity more broadly, it’s sometimes interesting to try to minimize
other things, such as the total number of messages sent, but today we’re only concerned about
minimizing the total number of bits sent.

4

• f(x, y) =

1 if x = y

0 otherwise

requires Θ(log d) bits of communication.

• f(x, y) =

0 if there is some i such that xi = yi = 1

1 otherwise

(set disjointness) re-

quires Θ(d) bits of communication.

4 Reducing Disjointness Testing To k-linearity

testing

Consider the function f(x, y) =
d∨

i=1

(xi ∧ yi) which tests whether the sets of ‘1’

bits in x and y are disjoint. Computing f(x, y) with a communication complexity

protocol requires Ω(k) bits of communication, where k is the number of ‘1‘ bits in

x and y. We will use this fact today without proving it.

We will prove a lower bound for k-linearity testing as follows: Given a k-

linearity tester that makes q queries, we will construct a communication protocol

that solves the set disjointness problem with O(q) bits of communication. Since

solving the set disjointness problem is known to require Ω(d) bits of communica-

tion, it must be the case that any k-linearity tester makes Ω(d) queries.

4.1 Communication Setup

Consider the following communication protocol. As usual, Alice has an input x

and Bob has an input y. Define the set A = {i | xi = 1} to contain the locations

of ‘1’ bits in x, and similarly define B = {i | yi = 1} to contain the locations of

‘1’ bits in y. Assume |A| = |B| = k.

Define the functions f(z) =
⊕
i∈A

zi, g(z) =
⊕
i∈B

zi, and h(z) = f(z)⊕ g(z).

5

4.2 Relating the Communication Setup to Disjointness

Consider an example where d = 4, k = 2.

Suppose A,B are disjoint; say A = {1, 2} and B = {3, 4}. Then f(z) = z1⊕z2

and g(z) = z3 ⊕ z4, so h(z) = z1 ⊕ z2 ⊕ z3 ⊕ z4. Note that h is 4-linear, since it

depends on all 4 of the input bits.

Now instead suppose A,B are not disjoint; say A = {1, 2} and B = {1, 3}.

Then f(z) = z1 ⊕ z2 and g(z) = z1 ⊕ z3, so h(z) = z1 ⊕ z2 ⊕ z1 ⊕ z3 = z2 ⊕ z3.

Note that since A and B both contain 1, the z1 terms cancel out. Now h is only

2-linear, since it depends only on z2 and z3.

We can generalize this example as follows:

Fact 8 If A and B are disjoint, then h is 2k-linear. Otherwise, h is at most

2k − 2-linear.

4.3 Communication Protocol

Given a tester for k-linearity, we can now create a protocol that tests set disjoint-

ness. The protocol works by having Alice and Bob both simulate the k-linearity

tester in sync, to determine whether the function h is 2k-linear. Whenever the

k-linearity tester would select a random value z, Alice and Bob use their shared

randomness pool to select the same value of z and remain in sync. Whenever the

k-linearity tester would query h on a value z, Alice computes f(z) and sends the

result to Bob, and Bob computes g(z) and sends the result to Alice. Then Alice

and Bob both know f(z) and g(z), so they can both compute the correct value of

h(z) and continue running the algorithm.

If the k-linearity tester requires q queries to h, then this protocol requires 2q

bits of communication between Alice and Bob (since each query to h causes Alice to

send one bit to Bob, and Bob to send one bit to Alice). Since A and B are disjoint

iff h is 2k-linear, this protocol correctly determines whether A and B are disjoint.

6

But it is known that any communication protocol to test disjointness requires at

least Θ(k) bits of communication. Therefore, 2q ≥ Θ(k), so any algorithm to test

for k-linearity must make at least Θ(k) queries.

7

