1 Introduction

Today we will go over linear functions, how to self-correct them and how to test them.

Definition 1 A function \(f : G \rightarrow H \), where \(G \) and \(H \) are finite groups having operations \(+_G \) and \(+_H \), is linear (homomorphic) if \(f(x) +_H f(y) = f(x+_G y) \) for all \(x,y \in G \).

Examples of finite groups:
- \(\mathbb{Z}_m \) with addition mod \(m \)
- \(\mathbb{Z}^k_m \) with coordinate-wise addition mod \(m \)

Examples of linear functions:
- \(f(x) = 0 \)
- \(f(x) = x \)
- \(f(x) = ax \mod m \)
- \(f_{\bar{a}}(\bar{x}) = \sum_i a_i x_i \mod m \)

Definition 2 A function \(f \) is \(\epsilon \)-linear if there is some linear function \(g \) such that \(f \) and \(g \) agree on an \((1 - \epsilon)\) fraction of inputs. Otherwise, \(f \) is \(\epsilon \)-far from linear.

This is equivalent to having \(\Pr_{x \in G}[f(x) = g(x)] \geq 1 - \epsilon \).

A Useful Observation For all \(a,y \in G \), \(\Pr_{x \in G}[y = a + x] = \frac{1}{|G|} \), because only a single value \(x = y - a \) satisfies this. Thus, if \(x \in_R G \) (\(x \) chosen from \(G \) uniformly at random), then \(a + x \in_R G \) for all \(a \in G \).

2 Self-Correction (or, Random Self-Reducibility)

Given a function \(f \) such that \(f \) is \(\frac{1}{8} \)-linear, let \(g \) be a linear function \(\frac{1}{8} \)-close to \(f \). To compute \(g(x) \):

Algorithm 1 Self-Correcting

\[
\text{for } i \in 1, \ldots, \log \frac{1}{\beta} \text{ do }
\quad \text{Pick } y \in_R G \\
\quad \text{answer}_i \leftarrow f(y) + f(x - y) \\
\text{end for}
\]

Output most common value over all \(\text{answer}_i \)

Claim 3 After running Algorithm 1, \(\Pr[\text{Output} = g(x)] \geq 1 - \beta \)

Proof \(\Pr[f(y) \neq g(y)] \leq \frac{1}{8} \) (by definition)
\(\Pr[f(x - y) \neq g(x - y)] \leq \frac{1}{8} \) (by our Useful Observation)
\(\Rightarrow \Pr[f(y) + f(x - y) \neq g(y) + g(x - y)] = \Pr[\text{answer}_i \neq g(x)] \leq \frac{1}{8} \) (by linearity and union bound)

Now we may use Chernoff to show that most common value of \(\text{answer}_i \) will be \(g(x) \) with probability \(1 - \beta \) after \(c \log \frac{1}{\beta} \) iterations. ■
3 Testing

The Goal: Given \(f \), if \(f \) is linear then PASS with probability 1. If \(f \) is \(\epsilon \)-far from linear, FAIL with probability at least 2/3.

Algorithm 2 Linearity Testing

for \(s \) times do
 Pick \(x,y \in \mathbb{R} \)
 if \(f(x) + f(y) \neq f(x+y) \) then
 Output FAIL and halt
 end if
end for
Output PASS and halt

If \(f \) is linear, Algorithm 2 clearly passes with probability 1. We will prove the contrapositive for \(\epsilon \)-far \(f \): if \(f \) is likely to pass, then \(f \) is \(\epsilon \)-linear.

Theorem 4 Say \(\delta = \Pr_{x,y}[f(x) + f(y) \neq f(x+y)] < 1/16 \). Then \(f \) is \(2\delta \)-linear.

This would mean that setting \(s = \Omega(1/\delta) = \Omega(16) \) is enough for such \(f \) to be likely to pass Algorithm 2.

Proof

Definition 5 Let \(g(x) = \text{plurality}_y[f(x+y) - f(y)] \), breaking ties arbitrarily.

In other words, \(g(x) \) is the self-correction of \(f \) on \(x \).

Definition 6 \(x \) is \(\rho \)-good if \(\Pr_y[g(x) = f(x+y) - f(y)] \geq 1 - \rho \) (i.e., a \((1-\rho) \) fraction of \(y \)'s agree on their vote for \(f(x) \)), and \(x \) is \(\rho \)-bad otherwise.

This means that if \(x \) is \(1/2 \)-good, then \(g(x) \) is defined on the majority element.

We prove Theorem 4 in three claims. With Claim 9, we show that \(g \) is defined for all \(x \) as the majority element. With Claim 8, we show that \(g \) is “linear”. Finally, with Claim 7 we show that \(f \) and \(g \) agree on at least a \(1 - 2\delta \) fraction of inputs, i.e. that they are \(2\delta \)-close, implying that \(f \) is \(2\delta \)-linear.

We now prove the claims.

Claim 7 If \(\rho < 1/2 \), \(\Pr_x[x \text{ is } \rho \text{-good and } g(x) = f(x)] > 1 - \frac{\delta}{\rho} \)

The claim implies that the fraction of \(x \) for which \(f \) and \(g \) both agree is greater than \(1 - \delta/\rho > 1 - 2\delta > 7/8 \).

Proof

Let \(\alpha_x = \Pr_y[f(x) \neq f(x+y) - f(y)] \).

If \(\alpha_x \leq \rho < 1/2 \), then \(x \) is \(\rho \)-good and \(g(x) = f(x) \) (and we have our claim).

\[E_x[\alpha_x] = \frac{1}{|G|} \sum_{x \in G} \Pr_y[f(x) \neq f(x+y) - f(y)] \]

\[= \Pr_{x,y}[f(x) \neq f(x+y) - f(y)] \]

\[= \delta. \]

Now by Markov:

\[\Pr[\alpha_x > \rho] \leq \frac{\rho}{\rho} \Rightarrow \Pr[\alpha_x \leq \rho] \geq 1 - \frac{\delta}{\rho}. \]

Claim 8 If \(\rho < 1/4 \) and \(x \) and \(y \) are both \(\rho \)-good, then (1) \(x+y \) is \(2\rho \)-good, and (2) \(g(x+y) = g(x) + g(y) \).
Proof Let $h(x, y) = g(x) + g(y)$.

Pr$_Z[g(y) \neq f(y + z) - f(z)] < \rho$ (because y is ρ-good), and

Pr$_Z[g(x) \neq f(x + (y + z)) - f(y + z)] < \rho$ (because x is ρ-good and $(y + z) \in \mathcal{R} G$). We have that $h(x, y) = g(x) + g(y)$, therefore

Pr$_Z[h(x, y) = f((x + (y + z)) - f(y + z) - f((y + z)) - f(z)] > 1 - 2\rho > \frac{1}{2}$ (by union bound of the above).

This means that $g(x + y) = h(x, y)$, because $f((x + y) + z) - f(z)$ is more than half of the votes and thus wins plurality for $g(x + y)$, by definition of g.

Also, $h(x, y) = g(x) + g(y)$ by definition of h, so $g(x + y) = g(x) + g(y)$. We also have that $(x + y)$ is 2ρ-good by the last probability statement. ■

Claim 9 If $\delta < \frac{1}{16}$, then for all x, x is 4δ-good and $g(x)$ is defined as the majority element.

Proof If there is a y such that y and $x + y$ are both 2δ-good, then by claim 8, x is 4δ-good and $g(x) = g(y) + g(x - y)$.

We prove that such a y must exist.

Pr$_y[y$ and $x + y$ are both 2δ-good$] > 1 - 2(\frac{\delta}{21}) = 0$, by claim 7 and union bound. Thus, such a y must exist and the claim holds. ■

3.1 δ Tightness

It is in fact possible to show this for $\delta < \frac{2}{3}$, rather than $\delta < \frac{1}{16}$. We show that we cannot do better than $\frac{2}{3}$ with an example of a function that is $\frac{2}{3}$-far from linear but passes our test with probability $\frac{7}{9}$.

$$f(x) = \begin{cases} 1 & x = 1 \mod 3 \\ 0 & x = 0 \mod 3 \\ -1 & x = 2 \mod 3 \end{cases}$$

The closest linear function is $g(x) = 0$, which is $\epsilon = \frac{2}{3}$-far from f. However, our test only fails in two of nine cases:

- When $x = y = 1 \mod 3$, $f(x) + f(y) = 2 \mod 3$ and $f(x + y) = -1 \mod 3$
- When $x = y = 2 \mod 3$, $f(x) + f(y) = -2 \mod 3$ and $f(x + y) = 1 \mod 3$