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1 Overview

• Distributed algorithms overview

• Parnas-Ron Framework

• Vertex cover approximations (sublinear and distributed)

Today, we covered how to use distributed local algorithms to inspire sublinear time sequential algo-
rithms. The overall idea is to use the insights and understandings leveraged in distributed algorithms.
Historically, this has led to a blending of ideas in the two fields. In lecture, we focus on a sublinear
approximation algorithm of a vertex cover.

2 Distributed Algorithms

2.1 Overview

The input to a distributed algorithms problem is a network, consisisting of processors (nodes) connected
by links (edges). Unlike in parallel algorithms, computation is performed by the communication network
on the communication network. In other words, the input graph is the network itself. For the purpose
of this class, we assume the following properties of the network.

1. max degree d

2. each processor knows its neighbors

3. synchronous computation – processors reliably send messages to each other during synchronized
rounds of communication

Each round operates in the following fashion.

1. Nodes perform computation on their input bits, random bits, and history of communication.

2. Nodes send messages to neighbors. Messages don’t necessarily have to be the same.

3. Nodes receive messages.

2.2 Connection to Sublinear Time

In the above setup, we can simulate the output of the distributed algorithm. Suppose we are interested
in node v’s state. After one round, v’s output is based on its information and its immediate neighbors’.
After two rounds, v implicitly learns information from its neighbors’ neighbors. Using induction, after
k rounds of an algorithm, node v knows and uses information from nodes at most k links away.

This implies that you can know v’s output using a sequential simulation that uses O(dk) queries.
The simulation only requires us to look at nodes within a k-radius ball of v, because information from
elsewhere in the graph won’t otherwise play a role in v’s output. There are lots of useful k-round
distributed algorithms for k constant or log log n.

In sublinear time algorithms, we often sample and test for some property. We can abstract the fast
distributed algorithm as an oracle that simply tells us if a node has some property.
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3 Vertex Cover

Given G = (V,E), V ′ ⊆ V is a vertex cover if ∀(u, v) ∈ E, either u or v ∈ V ′. From 6.046, we know
that finding the minimum vertex cover size is NP-hard. We also know that we can find a 2-approximation
of vertex cover size in polynomial time.

Assume that we have a bounded degree d graph, where d ≥ 2 and is a constant. Without this, the
problem becomes much harder.

Let |V ′| be the size of the vertex cover of G. For a connected, bounded graph, we can conclude that
|V ′| ≥ m

d ≥
n
d . This can be shown through contradiction. Each vertex in V ′ can cover at most d edges,

which in total must exceed m.

3.1 Distributed Subroutine

Now, we go over a distributed algorithm that returns a valid vertex cover.

Algorithm 1: Distributed Algorithm for Vertex Cover

Input : Graph G = (V,E)
Output: Approximated vertex cover A

1 i← 0 ;
2 while edges remain in E do
3 Let U be the set of nodes in V with degree ≥ d

2i ;
4 A← A ∪ U ;
5 Remove U from V and incident edges from E ;
6 Update degrees of remaining nodes in graph ;
7 i← i+ 1 ;

8 Return A ;

Example Walkthrough

...

...

Figure 1: Consider a graph with bounded degree 8. Orange nodes have degree 8.

In round 0, the orange nodes are added to A, because they have degree ≥ 8. In round 1, the blue
nodes, with degree 4, are added to A. In round 2, no modifications are made. In round 3, the green
nodes, now only connected to one another, are both added to A.

After the algorithm terminates at log2 d = 4 rounds, each node will know if it is in A.

Claim 1 A is a valid vertex cover.
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Proof At the end of algorithm 1, no edges remain. All removed edges must have at least one node
added to A.

Theorem 2 Let θ be any vertex cover of graph G. Algorithm 1 will output a valid vertex cover A, such
that |θ| ≤ |A| ≤ (1 + 2 log d)|θ|.

Proof Each round in algorithm 1 adds at most 2|θ| nodes that are not in θ to A. Let X be the set of
nodes that are removed during round i and are not in θ. Observe that for all nodes in X, every one of
their neighbors must be in θ, since θ is a vertex cover and X has no overlap with θ.

Let |EX | be the edges incident to X. On the ith iteration, all newly removed nodes have degree ≥ d
2i ,

so |EX | ≥ |X| d2i . Furthermore, because previous iterations removed high degree nodes, all remaining

nodes have degree ≤ d
2i−1 . That combined with the above observation (all EX end in θ) implies that

|EX | has an upper bound of |θ| d
2i−1 when all edges are connected to vertices not yet removed.

|X| d
2i
≤ |EX | ≤ |θ|

d

2i−1

|X| ≤ 2|θ|

If each round adds at most 2|θ| nodes not in θ, then at most 2 log d additional nodes can be added to
A, and the theorem follows directly.

The distributed algorithm achieves an O(log d) approximation in simulated O(dlog d) queries.

3.2 Using Parnas-Ron Framework

The Parnas-Ron framework samples nodes, simulates the distributed algorithm to check if a node is
in the vertex cover, and extrapolates and estimate from the results. We pick r based on desired ε. Using
Chernoff, we require r = O( 1

ε2 ).

Algorithm 2: Sublinear Vertex Cover (Parnas-Ron Framework)

Input : Graph G, ε
Output: v̂

1 i← 0 ;

2 r ← 1
ε2 ;

3 Sample r vertices v1, · · · , vr from G uniformly with replacement ;
4 for k = 1 to r do
5 Simulate algorithm 1 to see if vk is in the vertex cover;
6 if vk in vertex cover then
7 i← i+ 1 ;

8 Return v̂ = ( ir )n ;

Overall runtime is O(rdlog d) = O( 1
ε2 d

log d), which doesn’t depend on n. Additive error comes from
using sampling. Multiplicative error comes from the fact that the subroutine is an approximation.

Definition 3 ŷ is a (α, ε)-approximation of true value y for a minimization problem if y ≤ ŷ ≤ αy+ εn.

Algorithm 2 gives an (O(log d, εn))-approximation in dO(log d) queries. As food for thought, another

algorithm uses the Parnas-Ron framework to achieve a (2, εn)-approximation in dO( 1
ε log d) queries.
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