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1 Outline
• Relationship between Greedy Algorithm and Sublinear Algorithm through Maximal Matching

• Property Testing

2 Maximal Matching
2.1 Definition
Definition 1 (Maximal Matching) M ⊂ E, s.t.

1. No 2 edges in M share an endpoint

2. ∀(u, v) ∈ E \M , either u or v is matched by M

We have to emphasis that the matching we discussed in this lecture is maximal, not maximum.
Maximum matching is a NP-hard problem.

2.2 Relationship to Vertex Cover
It is interesting that the answers of these two graph problem can be bounded by each other. Specifically,

#Maximal Matching ≤ #Minimum V ertex Cover ≤ 2#Maximal Matching (1)

According to the definition of maximal matching, if we choose all the two nodes in a maximal
matching to cover the graph, then it is a vertex cover. Because every edge in E \M has one endpoint
in M .

On the other hand, just consider covering the edges in the M . Because such edges don’t share an
endpoint, obviously we need to choose one endpoint of this edges to be the cover vertex. Thus the
number of cover vertex chosen should be no smaller than the number of edges in a maximal matching.

2.3 Greedy Algorithm and Oracles

Algorithm 1: Greedy Algorithm for Maximal Matching
Input : Graph G = (V,E)
Output: Maximal Matching M

1 M ← ∅;
2 for (u, v) ∈ E do
3 if Neither u or v previously matched in M then
4 Add e to M

5 Return M

This algorithm seems to be very simple and correct, right? But there are two things we need to
consider: The first one is what is the order of iterate all the edges in E? The second one is how can we
check whether an edge is in M? For the first oracle, we can rank the edges in an arbitrary order.
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2.4 Oracle Reduction Framework
A general approach of making this problem sub-linear is to sample a portion of data and calculate the
size of maximal matching and scale the result to the whole graph, as we did in previous lectures. It
seems to be obvious but actually we need an oracle to check whether edge (v, w) is in M , which we will
discuss in the following section.

Algorithm 2: Maximal Matching
1 S ← 8

ϵ2 random chosen nodes;
2 for v ∈ S do
3 xv ← 0;
4 for ∀w ∈ Neighbor(V ) do
5 if (v, w) ∈M then
6 xv ← 1

7 Output: n
2S

∑
v∈S(xv) +

ϵn
2

2.5 Implementing the Oracle
Under the sub-linear framework, it is impossible to store all the edges in a list/set and refer to it every
time. Luckily, we have a clever approach given the edge selection order.

Algorithm 3: Check whether e ∈M

Input : Graph G = (V,E)
Output: Maximal Matching M

1 M ← ∅;
2 for (u, v) ∈ E do
3 if Neither u or v previously matched in M then
4 Add e to M

5 Return M

If a edge has the minimal rank among all the edges adjacent to its two endpoints, then it is in M .
Given an edge, we can do tree search on all its two endpoints. If the edge has the lowest rank then

we stop this branch. Otherwise, continue to search along the edges with lower rank.

Claim 1 To check whether a specific edge e is in M , the expected number of queries is 2O(d) in our
algorithm.

Proof Since we run tree search along the two endpoints of e, each path has decreasing rank.

Pr(path of length k has decreasing order) =
1

k!

For the graph with bounded degree d, there are (2d)k in each layer. So the total expectation of
queries is

E[#queries] =
∑
k≥1

(2d)k

k!
≤ e2d

(k + 1)!
= 2O(d)

Under bounded degree, the expectation of queries is constant.
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3 Property Testing
Definition 2 Graph G is ε − close to having property P if we can add/delete no more than εdmaxn
edges to get G′ ∈ P .

Our goal is to test whether a graph has property P with accurate result ≥ 2
3 : ∀G ∈ P , pass G; ∀G

which is ϵ-far from P , we should declare a failure.

Definition 3 (minor) H is a minor of G if we can obtain H from G through vertex removals, edge
removals or edge contractions. Else we can call G is H-minor free.

Definition 4 (minor-closed property) If G ∈ P , then all minors of G are also in P .

Theorem 2 (Robertson & Seymour) Every minor closed property is expressible as constant number
of excluded minors.

For example, planar graph is equivalent to the absence of K5 and K3,3.

Definition 5 ((ϵ, k)-hyperfinite) A graph is said to be (ϵ, k)-hyperfinite if we can remove ≤ ϵn edges
such that the graph can be transformed into components which all have size no larger than k. k can be
a function of ϵ.

This property can be interpreted as we can split the graph into bounded size components after
deleting a small fraction of edges.
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