
6.889 Sublinear Time Algorithms February 25, 2019

Lecture 6
Lecturer: Ronitt Rubinfeld Scribe: Michal Shlapentokh-Rothman

1 Outline

Today, we will discuss a general framework for testing minor-free properties by looking at a way to test
planarity.

• Problem Setup and Definitions

• Algorithm Given Partition Oracle P

• Implementing Partition Oracle P

2 Problem Setup and Definitions

Our overall goal is to be able to distinguish graphs with a property P from all other graphs in sublinear
time. However, there is no (known) method to do this exactly without exploring the whole graph. So,
we will make a compromise: can we distinguish graphs with property P from graphs that are ε-far away
from having property P? We will show how to distinguish such graphs by looking at the property of

All graphs

G
ra

p
hs

th
at

are ε-close to

prop
erty

PG
ra

p
hs

with Property
P

Figure 1: We want to distinguish the line between the blue circle and the red circle

planarity. First, we will start with several definitions. Note that all graphs have max degree of d.

Definition 1 H is a minor of a graph G if we can obtain H from G via vertex removals, edge removals,
or edge contractions.

Figure 2: The graph on the left, is a minor of the graph on the right

1

Definition 2 G is H −minor − free if H is not minor of G

Definition 3 G is ε-close to H−minor−free if can remove ≤ εdn edges to make it H−minor−free.
(Otherwise, G is ε-far)

Definition 4 For a minor close property P , if G ∈ P , then all minors of G are in P

Our goal is to test H −minor freeness which means we want to pass H −minor free graphs and fail
graphs that are ε-far from H −minor free. The following theorem and definitions will be helpful.

Theorem 5 (Robertson and Seymour) Every minor-closed property is expressible as a constant
number of excluded minors.

Examples of minor-closed properties include K3,3 or K5, non-planar graphs and bounded tree width.

Definition 6 G is (ε, k)-hyperfinite if we can remove ≤ εn edges and remain with connected components
of size ≤ k.

In other words, we have a (ε, k)-hyperfinite graph if we can remove a few edges and break up graph into
small components. We can connect the notion of hyperfiniteness to H −minor freeness.

Theorem 7 Given H, ∃ CH such that ∀ 0 < ε < 1, every H −minor free of graph of degree ≤ d is

(εd,
C2
H

ε2)-hyperfinite.

All of this means that subgraphs of H −minor free graphs are also H −minor free and also hyperfinite.
Why is hyperfinitiness useful? We can use it to prove that a graph is H − minor free. We can

partition a graph G into G′ by removing only a few edges. If non-constant size components remain, then
we know that G is not H −minor free.

What if G′ is ε-close to having the property? Then we know that G is 2 · ε-close to having the
property. Furthermore, it is particularly easy to test whether G′ has the property since we can just pick
random components and in constant time test if they have the property.

What we need now is is a ‘local’ (sublinear) way to determine G′. First, we will assume that we have
a ‘partition oracle’ P and then we will construct the partition oracle.

3 Algorithm Given Partition Oracle

Our partition oracle will work as follows:

• Input: vertex v

• Output: p[v] (where v is the partition) name such that ∀ v ∈ V

1. |P [v]| ≤ k
2. P (v) is connected

If G is H −minor free, then with probability 9
10 , |u, v ∈ E|P [u] + P [v]| ≤ εd

4 n. In the first half of the
algorithm, we are determining if the partition oracle ‘looks right’ meaning are there few crossing edges
and in the second part we are testing random partitions.

2

3.1 Algorithm

Algorithm 1 Algorithm with Oracle

f̂ number of edges (u, v) such that P [u] 6= P [v] to additive error ≤ εdn
8

if f̂ > 3
8εdn then output fail and halt

end if
Choose S = O(1

ε) random nodes
for s ∈ S do

if P [s] ≥ K or P [s] is not H −minor free then
reject and halt.

end if
end for
Accept

The first part of the algorithm (the part before the choose statement), makes O(1
ε2) calls to the oracle.

The second part, makes O(dε2) calls to the oracle, making the total number of calls O(dε3)

3.2 Analysis

If G is H −minor free:

• We know that if G is H − minor free, then we will not halt on the first half of the algorithm
because E[f̂] ≤ εdn

4 and with sampling bounds f̂ ≤ εdn
4 + εdn

8 = 3
8εdn.

• Since, our oracle produces H −minor free graphs we can say ∀s ∈ V , P [s] is H −minor free.

We see that our algorithm works when G is H −minor free. Let us now analyze what happens when G
is ε-far from H −minor free.

• Case 1:P ’s output does not satisfy |{(u, v) ∈ E : P (u) 6= P (v)}| < εdn
2 . Using out sampling

bounds, we can say that f̂ > εdn
2 −

εdn
8 = 3

8εdn which means the algorithm will out put ‘fail’ with
probability ≥ 9

10 .

• Case 2: P ’s output does satisfy |{(u, v) ∈ E : P (u) 6= P (v)}| < εdn
2 . This means that G′ can be

created from G with edges in C removed. It is important to note that if G′ is ε
2 -close to G, This

means that if G is ε-far from aving a property, then G′ is ε
2 -far from having the property. Since

G′ is ε
2 -far from H −minor free, we much change ≥ εdn

2 edges to make it H −minor free, which
touch at least εn

2 nodes. So with probability ≥ ε
2 , we will pick a node in a component which is not

H −minor free.

We now need to implement the partition oracle P .

4 Implementing Partion Oracle

We will implement our partion oracle by first defining a global partitioning stragety that does not work
in sublinear time and then figuring out how to implement the strategy locally.

4.1 Global Partitioning Strategy

We will first define a useful concept known as an isolated neighborhood.

3

Definition 8 S is (δ, k)-isolated neighborhood of node v if:

• v ∈ S

• S is connected

• |S| ≤ k

• Number edges connecting S and S is ≤ δ|S|.

In hyperfinite graphs, most nodes have (δ, k)-isolated nodes. Why? Because if G is hyperfinite, then
we know that there exists some partitioning. However, we need there to be a partitioning for the
remaining graph since an algorithm may find a different partition. Luckily, we know that no matter
what was removed, due to H −minor free properties, we still have an H −minor free graph that is still
hyperfinite.

Algorithm 2 Global Partitioning Algorithm

π1, ..., πn be nodes in a random order p = φ
for i = 1..n do

if πi still in graph then,
if ∃(δ, k)-isolated neighborhood of πi in remaining graph. then

S=this neighborhood
else

S = {πi}
end if
P = P ∪ {S}
Remove S and adjacent edges from graph

end if
end for

We know that if S is (δ, k)-isolated, then it will contribute ≤ δ|s| edges, which overall means ≤ δn.
However, we cannot say the same if S = {πi} (one node). But we can show that we will not have too
many of these singleton cases.

Lemma 9 If G′ is a subgraph of a (hyperfinite) graph G such that G′ has ≥ δn nodes, then ≤ ε
30 fraction

of nodes in G′ do not have (ε, k)-isolated neighborhoods.

The idea for this proof is that since G is H − minor free, then G′ is H − minor free, meaning G′

is hyperfinite as well. This means there exists a partition such that most nodes in G′ are in (δ, k)-
isolated neighborhoods. This means that with a high probability, a random πi will be in a (δ, k)-isolated
neighborhood.

4.2 Local Simulation of Partitioning Oracle

We will input v, assume access to a random function π(v) such that π : v → [n] and then we will output
P [v].

4

Algorithm 3 Local Simulation

for all w such that π(w) < π(v) and w is distance ≤ 2k from v do
recursively compute P [w]
if ∃w such that v ∈ P [w] then

P[v]=P[w]
else

look for (δ, k)-isolated neighborhood of v (ignoring nodes which are in P [w] for smaller ranked
ws)

if find one then
P [v]= neighborhood

else
P [v] = {v}

end if
end if

end for

This algorithm makes dO(k) recursive calls. However, with the bounds we learned in the previous

lecture, the runtime is 2d
O(k)

. The best possible runtime right now is dO(log2(1
ε)).

5

