
6.889 Sublinear Time Algorithms February 27, 2019

Lecture 7
Lecturer: Ronitt Rubinfeld Scribe: Aaron Berger

1 Outline

Today we discussed an algorithm for testing whether a graph is bipartite.

2 The Tester

In the adjacency matrix model we have a graph G = (V,E) represented by an adjacency matrix Aij ,
where Aij = 1 if (i, j) ∈ E and 0 otherwise. We assume we can query any Ai,j in one step.

Definition 1 In this model, say G is ε-far from property P if we must change more than εn2 entries in
A(G) (i.e. εn2 edges) to make G satisfy property P .

Note that under this model, some properties become trivial. For example, every graph can be made
connected by adding at most n − 1 edges (just add a spanning tree). Then since εn2 > n − 1 for suf-
ficiently large n, no sufficiently large graphs are ε-far from being connected. An algorithm to test this
would therefore run in constant time (as it would just pass every graph)!

The property we want to test today will be bipartiteness.

Definition 2 The following equivalent definitions characterize bipartiteness.

1. One can color each node of V either red or blue such that there is no monochromatic edge (i.e., no
edge with both vertices having the same color.)

2. One can partition V into two parts (V1, V2) such that no edge has both vertices in V1 or both vertices
in V2.

Consequently, we obtain the following two equivalent characterizations of being ε-far from bipartite:

Proposition 1 A graph is ε-far from bipartite if and only if one of the following (equivalent) properties
holds:

3. One must remove more than εn2 edges to satisfy property (1) above, i.e., for the graph to have a
proper 2-coloring.

4. One must remove more than εn2 edges to satisfy property (2) above, i.e., for the graph to have a
partition V = V1 t V2 with no edge having both vertices in V1 or V2.

Our first attempt at producing an algorithm is as follows:

Algorithm 1: First Attempt Bipartite Tester

Input : G = (V,E) graph in adjacency matrix form
Output: Tests whether G is bipartite or ε-far from bipartite

1 Pick m = Θ(?) random pairs (i, j) and query Ai,j .
2 For all partitions V1 t V2 = V :
3 violatingv1,v2 ← # edges in sample lying entirely in V1 or V2.
4 If all violatingv1,v2 > 0, FAIL
5 Else, PASS

1

If G is bipartite, there is some partition with no violating edges (characterization 2) and therefore
we will always PASS. If G is ε-far from being bipartite, then every partition has at least εn2 violating
edges (so an ε-fraction of its edges are violating). The property that we see a violating edge for a fixed
partition is therefore at least 1 − (1 − ε)m, because we chose m edges randomly and each is good with
probability at most (1− ε).

Then since there are 2n partitions, the probability that none of them pass can be (union) bounded
by 1− (2n(1− ε)n), so in order to make this less than 1 we’d need m = Ω(n/ε). Plus we’d still need to
check each of the 2n partitions. So we use a bunch of queries and check a bunch of partitions, so both
are inefficient steps that we’d like to improve.

The plan to fix this will be to use an ε-net, i.e. rather than query each of the 2n partitions, we will
query a small number of partitions so that we don’t get every partition but we at least get something
“close” to every partition. Hopefully the number of violating edges will be similar for partitions that
are close, so we can get information about violating edges for all partitions by only querying a small
number. Here is how that might look:

Algorithm 2: Ideal Bipartite Tester

Input : G = (V,E) graph in adjacency matrix form
Output:

1 Pick m = Θ(1
ε2 log(1/ε)) random nodes.

2 If the induced subgraph is not bipartite, FAIL
3 Else, PASS

Every bipartite graph will still pass this algorithm (think of the coloring definition to see this, for
example). It’s not at all clear that a graph that is far from being bipartite will fail, however. Here’s a
second similar algorithm which should convince us that the first one works.

Algorithm 3: Actual Bipartite Tester

Input : G = (V,E) graph in adjacency matrix form
Output:

1 Randomly pick Θ(1
ε log 1

ε) and call this set U .

2 Randomly pick Θ(1
ε2 log 1

ε) pairs of nodes and call this set U ′ = {(u1, v1), (u2, v2), . . .}.
3 If U is not bipartite, FAIL.
4 Else, for each bipartition U = U1 t U2 (with no violating edges):
5 Attempt to partition all vertices of the graph into two sets W1 tW2, where W1 are the

vertices connected to something in U2, and W2 are the vertices connected to something in U1,
or to neither.

6 If this attempt fails, i.e., something is connected to both, then the partition of U is bad;
continue to the next one.

7 Count the edges in U ′ that violate the partition W1,W2, i.e., those with both endpoints

entirely in one part or the other. If this number is less than 3
4ε|U

′|, then PASS.
8 Else continue to the next partition of U .
9 If no partition of U succeeds, then Fail.

In this algorithm we have the opposite problem to usual: here it’s easy to show that bad graphs fail,
but hard to show that good graphs pass. If G is ε-far from bipartite, then at least an ε-fraction of the
edges will violate any choice of W1,W2 (Property 4). So with very high probability (Chernoff bound)
our random choice of U ′ will have more than a 3

4ε fraction of its edges be violating, every time.
On the other hand, say G was actually bipartite. Then it has at least one bipartition V = (Y1, Y2)

with no violating edges. For any sample U , let’s consider the step of the algorithm when U1 is set to
Y1∩U and U2 is set to Y2∩U (this has no violating edges so it will be tested at some point, unless we’ve
already passed.) Let Wu1,u2

1 ,Wu1,u2

2 be what the algorithm chooses for W1 and W2 at this iteration. We
want to show that these W1 and W2 are a good approximation for Y1 and Y2. If a vertex is connected to

2

Wu1,u2

1 ⊂ Y1, then it must be in Y2 and also must be put in Wu1,u2

2 . Similarly, if a vertex is connected to
Wu1,u2

2 ⊂ Y2 then it must be in Y1 and also must be put in W1. Therefore the only vertices v where Y1
and W1, or Y2 and W2 differ, are those vertices that are connected to nothing in U whatsoever. There
are two cases for such a vertex v that has no neighbor in U :

• small degree: deg(v) < ε
4n. Call this set of vertices A

• high degree: deg(v) ≥ ε
4n. Call this set of vertices B.

Now a violating edge must have at least one vertex placed incorrectly, as Since each vertex in A has
degree at most ε4n, each contributes at most ε4n violating edges.

For vertices with high degree, they should be very unlikely to have none of their neighbors in U , so
we expect the size of B to be very small. For any vertex with degree at least ε

4n, this probability is at

most (1 − ε/4)|U |, so plugging in our choice of |U | this is at most ε/32. Consequently, by linearity of
expectation, the expected number of vertices in B is at most εn/32. Then by Markov, with probability
at least 7/8, the size of B is at most εn/4.

Adding the contributions from A and B, the expected number of violating edges is at most εn2/2.
Consequently, a quick Chernoff bound on the number of samples shows that the fraction of violating
edges we get should be very unlikely to be greater than 3/4, and so the algorithm will PASS with high
probability.

3

