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1 Testing “Triangle Freeness” for Dense Graphs
Definition 1 Triangle Freeness.

Graph G is triangle free, or A-free, if there does not exist an x, y, 2 such that A(z,y) = A(y, z) = A(z,2) = 1.

Claim: If there exists a property testing algorithm for A-freeness, then there exists an algorithm that works
as follows:

1. Pick random z,y, z
2. Test if A(x,y) = Ay, 2) = A(z,2) =1

However, we need to show how many times we must query the above instructions.

2 Detour

Let’s first determine how many triangles are in a random tripartite graph and then illustrate tools to assess
triangle freeness.

<+—— Density 5

Figure 1: Random tripartite graph with density 7
Assume that the density of edges between all subgraphs, or sets, above is 7 and A, 5 . is an indicator variable

such that:

A 1 if there exists a triangle connecting a, b, ¢
b = .
“e 0 otherwise



Now, V a € A,b € B,c € C, the probability that there exists a triangle connecting some a,b,c and the
expected value of the indicator are the following:

Pr[Aay.) =7
EAapd =17
Further, the expected number of triangles connecting the three subgraphs above is computed as:
E[#As] = |A]|B||C| - n®
Now, let’s define the density and regularity of set pairs.
Definition 2 Regular Pairs. (i.e. vy-regular)

Let A,B C V such that AN B =0, |A] > 1, and |B| > 1. Let e(A, B) = the number of edges between A
and B, with density defined as:

_ e(A,B)
(A, B) = Tarimr

We say that A, B are v-regular if V A’ C A and V B’ C B where
|A'| = - |Al and [B'| > v - |B],
the difference in densities between the pairs is:
|d(A7 B) - d(AI7 Bl)' <7

Thus, the graphs A’ and B’ must first be large enough to behave like random graphs, and then the densities
between the pairs must be less than . Note, the v values above — indicating the size of the subsets and
the difference in density — do not have to be the same. Here, we simply use the same variable to reduce the
number of parameters.

Lemma 3 Triangle Counting Lemma (Komlds and Simonovits). Vi > 0, there exists v = y2(n) = 3-m and

§=62m)=0-n)- ”8—3 > % (if n < 3), such that if A, B, and C are disjoint subsets of V, and each pair
is y-regular with density > n, then G contains > § - |A||B||C| triangles with a node in each of A, B, and C.

Proof We aim to prove the Triangle Counting Lemma. Note, such a lemma exists for all sizes of sub-
graphs. Let A* = the nodes in A with > (n — ~)|B| neighbors in B and > (1 — v)|C| neighbors in C.

In order to proceed, consider the following claim:
Claim 4 |A*| > (1 — 27)|4|

Proof To prove the above claim, we know that if A’ is the number of bad nodes of A with
respect to B and A" is the number of bad nodes of A with respect to C' — in other words, there
are < (n—)|B| neighbors in B and < (—+)|C| neighbors in C, respectively — then |A’| < v-|A4|
and [A"] <~ -]A].

For contradiction, assume this is not true, i.e. |A’| > - |A|. Then

d(A', B) = B = (=)



However, we know that d(A, B) > n (by definition in the lemma), causing
(A", B) —d(A, B)| > v

which contradicts the assumed v-regularity. Note, B is large enough to behave as a random
graph, by definition, and A’ is at least A by the assumption, leading A’ to be large enough to
also behave as a random graph. One can make a similar argument for A”.

Observe that A* = A\ (A’ U A”), since A* does not contain bad nodes. So
A" 2 |A] - A A"
> |A| — 27 - | 4], since we showed that |A’| < v-|A] and |A”| < v -|A4]
> (1=2)|4]
]

To complete the proof of the Triangle Counting Lemma, for each u € A*, define B,, to be the neighbors of
u in B and C, to be the neighbors of u in C. Thus, if v < 2:

|Bul > (n—7)-|B| >~ -|B]
|Cul > (n =) |C| >~ |C]|

Figure 2: Tripartite graph with u € A*, where B,, and C,, are neighbors of w.

As aresult, |B,| and |C,| are large enough. Further, note that we assume d(B,C) = 7 in the lemma. Thus,
d(B,,Cy,) > n—", and
e(Bu,Cu) = (n—7) - |Bul|Cul
> (n—7)°-|BlIC|



This gives a lower bound on the number of triangles that contain u as an endpoint. The total number of
triangles with a node in each of A, B, and C' is then as follows:

total # of triangles > Z (n—~)%-|B||C|
ucA*
> (1—29)|A]- (n—~)* - |Bl|C]

> (1—27)-(n—7)*-|A||B||C|, and since we choose v <

N3

773
> (1-n)- L 14|B|C]

3 Szemerédi’s Regularity Lemma (SRL)

We would like to equipartition the nodes in a graph into sets V1, ..., Vi such that all (or most) pairs (V;, V;)
are e-regular.

Lemma 5 Vm and € > 0, there exists T(m,€) such that given G = (V, E) with |V| > T where A is an
equipartition of V' into (m << T') sets, then there exists an equipartition B of V into k sets which refine A
such that m < k <T and < (g) set pairs are not e-reqular.

Figure 3: Apply SRL to refine G into a constant number of partitions such that the pairs behave like a
random bipartite graph and are mostly regular.

In other words, given an arbitrary starting point, we can refine A so that the graph is e-regular and all
subgraphs have roughly the same number of nodes. Further, we can partition the graph into a constant
number of partitions such that each pair of sets behaves like a random bipartite graph.

3.1 Property Testing

Property testing is an application of the SRL. Given a graph in adjacency matrix form, we would like to
construct an algorithm which outputs PASS if the graph is triangle free and FAIL with probability > % if
the graph is e-far from triangle free. Note, if the graph is e-far from triangle free, one must add € - n? edges
to transform the graph to be triangle free. A possible algorithm is the following:



Algorithm 1: Triangle Freeness

Input : Graph G in adjacency matrix form
for O(671) iterations do

pick Vi, V5, V3
L if A, halt and output FAIL

4 Return PASS

N =

3

To assess the behavior of the above algorithm, consider the theorem:
Theorem 6 If G is e-far from A-free, then G has > § - (g) distinct As.
As a result, O(%) loops of the algorithm finds a possible triangle with high probability.

Corollary 7 The algorithm accepts with probability 1 if the graph is triangle free. If the graph is e-far from
triangle free, meaning there are more than § - (g) triangles,

Pr[do not find a tringle in % loops] < (1 —68)°/?

C

IN

o
1 .
< 1 for big enough ¢

Proof Given the corollary, we need to prove Theorem 6. With this, we can construct the algorithm to

test if the graph is e-far from triangle free with failure probability less than 1. First, we use the SRL to

1
obtain {V4, ...,V } such that 2 < k < T(2,¢) for ¢ = min{g,7*(£)} such that less than € - (g) pairs are
not €’-regular. The aforementioned is equivalent to <* > # > ﬁ, representing the number of nodes per

partition.

To clean up G, we assume that # (the number of nodes per partition) is an integer. G’ is the result after
performing the following:

€

n’ deleted edges. Note, we multiplied by

1. Delete edges internal to any V;. This amounts to < 7 -n < <

n to sum over all of the nodes.

2. Delete edges between non-regular pairs. This amounts to < € - (];) . (%)2 <z 72 Z—z < 6‘17(‘)2.
. 2
3. Remove low density (< £) pairs. This amounts to <), density pairs %(%)2 < %(721) < 50

Therefore, the total number of deleted edges is E'gz + 6'1%2 + % < €-n?. Thus, since G was e-far from

triangle free, G’ must still have a triangle. By the way we constructed G’, we know the remaining triangles
between some V;, V;, V}, contain:

1. Distinct endpoints, since we removed all edges within the partitions
2. Regular pairs, since we removed all non-regular pairs
3. Dense pairs, since we removed all low density pairs

In the end, nodes in each one of V;, V}, Vj, comprise distinct triangles which have > £ density and 5A(§)-
regular pairs.

To determine the number of triangles in G’, we invoke the Triangle Counting Lemma.
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Now that we have proven Theorem 6, we can use the previously mentioned algorithm for triangle freeness,
which fails with probability less than % after O(%) iterations when the graph is e-far from A-free.



