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1 Outline

Today we discuss lower bounds for property testing, and in particular we show the following:

Testing triangle-freeness requires super-poly dependence on ε.

where we want to distinguish triangle free graphs vs graphs that are ε-far from being triangle-free.

2 Introduction

2.1 Context

In the previous lecture, we saw a testing algorithm for triangle freeness with constant time in terms
of n, and very bad dependence on ε (in the form of towers of 2).

It is natural to ask if this dependence on ε is actually needed. Today we answer this question for
one-sided error testers. In particular, we have that:

• If H is bipartite, then poly(1/ε) is enough, i.e. we have a tester in poly(1/ε) time.

• If H is not bipartite, then poly(1/ε) does not suffice.

We prove the special case where H is a triangle, which is depicted in the following theorem. Note that
our model is the adjacency matrix model.

Theorem 1 There exists a constant c such that any one-sided tester for whether graph G is triangle-free
needs ( cε )

c log c/ε queries.

2.2 Tools

We use two main tools to prove Theorem 1. The first tool is the following theorem due to Goldreich-
Trevisan, which converts a canonical tester to a non-canonical tester with a blow-up in the number of
queries.

Theorem 2 Assume that there exists tester T for property P in the adjacency matrix model of graphs
that uses q(n, ε) queries where n is the number of nodes of the graph. Then the following “natural tester”
T ′ uses q(n, ε)2 queries to test P : It picks q(n, ε) nodes, queries the submatrix under these nodes and
decides for property P .

This theorem has an important consequence: A lower bound of Ω(q′) for a natural tester results in a
lower bound of Ω(

√
q′) for any tester. This is because any tester can be converted to a natural tester

with a quadratic blow-up. So if we have a tester that has complexity o(
√
q′), then by theorem 2, there

is a natural tester with query complexity o(
√
q′) which contradicts the assumption of having a lower

bound on natural testers.
The second tool is the following additive number theory lemma. We use this lemma to construct

graphs that are far from being triangle free and any natural tester requires Ω(( cε )
c log c/ε) many queries

to distinguish them from triangle free graphs.

Lemma 3 For every natural number m, there exists X ⊆M = {1, 2, . . . ,m} of size at least m/e10
√
logm,

with no non-trivial solution to the equation x1 +x2 = 2x3, where a trivial solution is when x1 = x2 = x3.
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We call a set X with the property mentioned in Lemma 3 a sum-free set. To give some insight into
sum-free sets, we provide some examples.

• Neither of the sets {1, 2, 3} and {5, 9, 13} are sum-free, because 1 + 3 = 2× 2 and 5 + 13 = 2× 9.

• One can try constructing a sum-free set by going over numbers in increasing order and selecting
ones that do not contradict the sum-freeness property. This way, for m = 10, we get the set
{1, 2, 4, 5, 10}. However, it’s not clear that for each m, how big the set that results from this
approach is.

• A more clear approach is to consider the powers of 2 that are less than m. But the size of this set
is logm which is too small.

3 Triangle Freeness Lower Bound

In this section we first prove Lemma 3, and then using it together with Theorem 2, we prove Theorem
1.

3.1 Proof of Lemma 3.

We first fix two constants. Let d = e10
√
logm, and let k = b logmlog d c− 1. The idea is to partition a big part

of the set M = {1, 2, . . . ,m} into sum-free sets XB for integer B, and then argue that since the number
of these sets is not big, by the pigeon-hole principle one of them must be a big set itself. For an integer
B, define XB as follows.

XB = {
k∑
i=0

xid
i |xi <

d

2
for 0 ≤ i ≤ k and

k∑
i=0

x2i = B}

Note that if we view the integers in XB in base d, then xis are the “digits” of these numbers. The
intuition behind the first constraint for these digits, i.e. xi < d/2 is that we want the sum of each two
numbers in XB be carry-free, which is used in the proof of sum-freeness of XB . The intuition behind
the second condition also appears in the proof of sum-freeness of XB . But before showing that XB is
sum-free, we show that it is a subset of M .

Claim 4 For any integer B, we have XB ⊆M .

Proof Note that the largest number in XB is less than
∑k
i=0 d

i+1/2 < dk+1. Now we have dk+1 ≤
d(blogm/ log dc−1)+1 ≤ dlogdm = mlogd d = m.

Claim 5 XB is sum-free.

Proof By way of contradiction, suppose that there are integers x, y, z ∈ XB such that x + y = 2z.
Writing x, y and z in base d with digits xi, yi and zi, respectively for i = 0, . . . , k, we have that∑k
i=0 xid

i+
∑k
i=0 yid

i = 2
∑k
i=0 zid

i. So since we have no carries, this is equivalent to having xi+yi = 2zi
for all i = 0, . . . , k. Note that since the function f(a) = a2 is convex, by Jensen’s inequality we have
that f(xi) + f(yi) ≥ 2f(zi), with equality if and only if xi = yi = zi. So x2i + y2i ≥ 2z2i , with equality if
and only if xi = yi = zi. Since x, y and z are not all equal, we have that for some i, x2i + y2i > 2z2i . So∑k
i=0 x

2
i +

∑k
i=0 y

2
i > 2

∑k
i=0 z

2
i . This is a contradiction, since

∑k
i=0 x

2
i =

∑k
i=0 y

2
i =

∑k
i=0 z

2
i = B.

To finish the proof of the lemma, we first see how big B can be so that XB is non-empty, and then
we derive a bound on the size of the largest XB . Note that B =

∑k
i=0 x

2
i ≤ (k + 1)(d2 )2 < kd2. So

we only consider XB with B < kd2. Now since the largest number in XB is at most dk+1, the size of
the union of the sets XB is the following: | ∪B<kd2 XB | ≥ (d2 )k+1 > (d2 )k. Note that | ∪B<kd2 XB | =∑
B<kd2 |XB | because these sets are disjoint. So by the pigeon-hole principle, there exists B < kd2 such

that |XB | ≥ (d2 )k/kd2. Plugging in the values of d and k, we see that |XB | ≥ m
e10

√
log m .
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Figure 1: The graph G.

3.2 Proof of Theorem 1

Using the set X ∈ {1, . . . ,m} from Lemma 3, we construct a graph that is dense and far from being
triangle free and we show that we need many queries to discover a triangle in it. Construct the graph
G as follows: Let V1 = {1, . . . ,m}, V2 = {1, . . . , 2m} and V3 = {1, . . . , 3m} be three sets of vertices
that each form an independent set. For each x ∈ X add the following edges: Connect each j ∈ V1 to
j + x ∈ V2. Connect each k ∈ V2 to k + x ∈ V3 and connect each l ∈ V1 to l + 2x ∈ V3. Figure 2 shows
the construction.

3.2.1 G properties

The number of nodes of G is 6m and the number of edges is Θ(m|X|) = Θ(n2/e10
√
logm). So G is not

dense enough yet. First we see how many triangles G has and how far G is from triangle freeness, and
then we convert G to a dense graph.

Number of trianlges For each j ∈ {1, . . . ,m}, there is a triangle with vertices j, j + x, j + 2x. we

call these triangles intended. So the number of intended triangles is m|X| = Θ(n2/e10
√
logm). We show

that all the triangles in G are intended. In order to do so, first note that there are no triangles with at
least two vertices in one of the sets V1, V2 or V3, because there is no edge in these sets. So assume that
u ∈ V1, v ∈ V2 and w ∈ V3 form a triangle. Since uv is an edge, there is x1 ∈ X such that v = u + x1.
Similarly, there is x2 and x3, such that w = v + x2 and w = u + 2x3. So we have that x1 + x2 = 2x3.
Now since X is sum-free, we have that x1 = x2 = x3, and so uvw is an intended triangle.

Number of edge-disjoint triangles We show that all intended triangles are actually edge-disjoint.
Note that each intended triangle j, j + x, j + 2x can be uniquely determined by the pair (j, x). Assume
that the triangles j, j+ x, j+ 2x and j′, j+ x′, j′+ 2x′ share an edge. No matter which edge they share,
we have that x = x′, because the difference between endpoints of that edge in the first triangle is either
x or 2x, and in the second triangle is either x′ or 2x′. Now since they share an edge, they also share the
endpoints of it, and so we see that j = j′.

Distance to triangle freeness In order to make G triangle free we need to remove at least one edge
from each triangle. Since all triangles of G are edge-disjoint, the number of edges that we need to remove
is the same as the number of trianlges which is Θ(n2/e10

√
logm).
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Figure 2: The graph G(s).

Issues with the construction First, we see that G is not Ω(εn2)-far from triangle freeness, and
second, it is not dense enough. Next we fix these issues.

3.2.2 Fixed construction

Define the s-blow-up of G as the graph G(s) where each vertex u in G is replaced by an independent
set u(s) of size s in G(s), and each edge uv in G is replaced by a complete bipartite graph between u(s)

and v(s) in G(s). Note that the number of nodes in G(s) is 6ms and the number of edges is Θ(m|X|s2).
Each triangle in G is converted to s3 trianlges in G(s), so there are Θ(m|X|s3) triangles in G(s).

Lemma 6 The distance of G(s) from triangle freeness is at least m|X|s2.

Proof We say that a triangle in G(s) with vertices in u(s), v(s) and w(s) is made from the triangle uvw
in G. If two triangles in G(s) are made from two different triangles in G, then they are edge-disjoint, since
the trianlges in G are edge-disjoint. We need to prove that we have at least m|X|s2 edge-disjoint triangles
in G(s), and in order to do so we show that each triangle in G makes s2 edge-disjoint triangles in G(s).
Consider the triangle uvw in G, and let u(s) = {u1, . . . , us}, v(s) = {v1, . . . , vs} and w(s) = {w1, . . . , ws}.
Consider the following s2 triangles: Tuvw = {uivjwk | i+j+k ≡ 0 (mod s)}. First, |Tuvw| = s2 because i
and j have s choices each and for each choice of i and j, k is uniquely determined. Moreover, suppose that
uivjwk and ui′vj′wk′ share an edge. Then {i, j, k}∩ {i′, j′, k′} ≥ 2. But since the choice of two numbers
in {i, j, k} determines the third, this means that {i, j, k} = {i′, j′, k′}, and so uivjwk = ui′vj′wk′ . So the
triangles in Tuvw are edge-disjoint.

Finishing the proof of Theorem 1 Using the construction above, we need to set the parameters and
show that this construction gives the lower bound. Given ε, pick m to be the largest integer satisfying
ε ≤ 1/e10

√
logm. So we have m ≥ ( cε )

c log c/ε. We want the number of vertices of G(s) to be n, so pick

s = b n6mc and as a result s is roughly n( εc )
c log c/ε by the way we picked ε. To compute the number of

edges, note that it is roughly m|X|s2 where |X| = m
e10

√
log m . Now since m2s2 = Θ(n), the number of

edges is roughly n2/e10
√
logm which is εn2. So the graph is dense. The number of triangles is m|X|s3,

and by plugging in the values of m, |X| and s we have that it is roughly ( εc′ )
c′ log c′/εn3 for some constant

c′.
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Now if we have a natural tester with sample size of q < ( c
′

ε )c
′ log c′/ε, then we have

E[number of triangles in the sample] <

(
q

3

)
(
c′

ε
)c

′ log c′/ε << 1

So by Markov’s inequality, the probability that we see a triangle in the sample is very small. Note that
since we have one-sided error, we must find a triangle in order to output Fail. So with low probability
we output fail with less than ( c

′

ε )c
′ log c′/ε samples, and hence we need ( c

′

ε )c
′ log c′/ε samples for natural

testers. This gives a ( c
′

ε )
c′
2 log c′/ε lower bound for any tester by Theorem 2.
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