Today:

Undirected $S-T$ Connectivity revisited
(deterministic logspace)

Given: undir G

nodes s, t

Question: are s, t in same component?

an easy case:

def. (N, D, λ)-graph

\uparrow \uparrow

$\# $nodes degree upper bd of transition matrix

a well known fact:
Tanner, Allen-Millman

$\forall \lambda < 1, \exists \varepsilon > 0 $ s.t. $\forall (N, D, \lambda)$-graph

$+ A S $ s.t. $15 \leq N \over 2 \quad |N(S)| \geq (1+\varepsilon)|S|$

includes S
\[\lambda < 1 \implies G \text{ has } O(\log n) \text{ diameter} \]

Idea for "low diameter + const degree"

- (each component is low diameter)
- starting at \(s \):
 - enumerate all paths of length \(O(\log n) = l \)
 - \(\# \text{ paths} = N = O(l) = O(\log n) = N \)
 - since \(D = O(1) \)
 - if ever see \(t \), output "connected" (\(\text{O.w.} \) "disconnected")

Correct? \(\checkmark \)

Space: Keep track of DFS
- const \# bits for each step
- \(O(\log n) \) length
- Total \(O(\log^2 n) \)
Problem: not all graphs \((N,0,\lambda)\) for \(\lambda < 1\)

- \(O(\log N)\) diam
- Const deg

\(O((\log n)^2)\) Solution:

- Keep track of nodes on DFS stack
- \(S = 1\)

- \(L\) \(L\) \(L\)
- \(L\) \(L\) \(R\)
- \(L\) \(R\) \(L\)

\(O(\log n)\) Solution:

- Keep track of choices on DFS stack
- Can find parents by looking for start of choices
- \((\log n \cdot O(1) + O(1))\) to find previous starting at root and following choices
For general graphs:

Thm 4 connected, non-bipartite \(\lambda(S) \leq 1 - \frac{1}{\text{DN}_2} \)

What about powering?

\(G \) is \((N, D, \lambda)\) \(\rightarrow \) \(G^t \) is \((N, D^t, \lambda^t)\)

good/bad?

+ same soln
+ reduce \(\lambda_2 \)
- increased degree

will power but will add operation
which reduces degree
w/o increasing \(\lambda_2 \) by too much
"Base graph"

Thm 1 \[\exists \text{ const } D_e \geq (|D_e|^{16}, D_e^{1/2})\text{-graph} \]

- const size graph that has small \(\lambda_2 \)
- can use it for any input
- can find via enumeration

Can we assume \(G \) is const degree?

Transform \(G \)

\[G': \begin{align*}
\text{degree } \leq N \\
\text{# nodes } = N
\end{align*} \]

\[\Rightarrow \text{ new } G \]

\[\begin{align*}
\text{degree } \leq 3 \\
\text{# nodes } \leq N^2
\end{align*} \]

Same connectivity properties
Representing graphs:

Rotation map: \(\text{Rot}_6 : [N] \times [N] \rightarrow [N] \times [N] \)

\(\text{Rot}_6 (v, i) = (w, j) \) if

- \(i \)th edge of \(v \) leads to \(w \)
- \(j \)th edge of \(w \) leads to \(v \)

allows back & forth on same edge

\[G: \]

\[x \quad \bullet \quad 0 \quad \bullet \quad 0 \quad \bullet \quad u \quad v \quad w \]

Replacement Product \(G \odot H \)

Given \(G, d\text{-reg}, N \) nodes \(\Rightarrow G' \) \(N \cdot D \) nodes

\(H, d\text{-reg}, D \) nodes \(\Rightarrow \)

reduces degree, what does it do to \(\lambda \)?
nodes: \(v \in G \) replaced by copy \(H \)

edges: each vertex in \(H_v \) connected to nbors in \(H_v \)

- if \(u \) is \(i \)th nbr of \(v \) in \(G \)
 - \(v \) is \(j \)th nbr of \(u \)
 - add edge from \(i \)th node of \(H_v \)
 to \(j \)th " " \(H_v \)

\[G \]
\[x \quad 2 \quad u \quad v \]
\[H \]
\[1 \quad 2 \quad 3 \]

\[\Rightarrow G \bowtie H \]

\[x \quad \cdots \quad u \quad \cdots \quad v \quad \cdots \quad w \cdots \]
Zig Zag Product $G@H$

Given G D-reg N nodes $\Rightarrow G''$ with $N\cdot D$ nodes H d-reg D nodes $\Rightarrow d^{2}$

nodes: as in G'
 each $v \in G$ replaced by copy of H

edges: path of length 3 in G'
 $(u,v) \in G''$ iff $u \in H_{i}$ "cloud i"
 $\exists w \in H_{i}$ s.t. $(w,v) \in E(H_{i})$
 $(w,z) \in G@H$
 $(z,v) \in E(H_{j})$ where $v \in H_{j}$

new degree d^{2}
Thm: For $\alpha \leq \frac{1}{2}$

G an $(N,0,\lambda)$-graph and H a (N,d,λ)-graph

$G \boxtimes H$ is $(N,0,d,\lambda_{G \boxtimes H})$-graph

s.t.

$\frac{1}{\alpha} (1-\alpha^2) (1-\lambda) \leq 1 - \lambda_{G \boxtimes H}$

So

$\lambda_{G \boxtimes H} \leq 1 - \frac{1}{2} \left(1-\alpha^2\right)(1-\lambda)$

$\leq 1 - \frac{3}{8} \lambda$ ($\leq \frac{2}{3} + \frac{\lambda}{3}$) - still < 1

So degree drops + λ_2 isn't so bad

How to use?

Main transformation:

Given:

G D^{16}-reg on N nodes
H D-reg on D^{16} nodes
Transformation:

\[\lambda = \text{smallest int s.t. } \left(1 - \frac{1}{DN^2} \right)^d \leq \frac{1}{2} \]

\[G_0 \leftarrow G \]

\[G_{\lambda} \leftarrow (G_{\lambda-1} \circ
\text{deg reduction} \right)^8 \]

Output: \[G_\lambda \]

Properties of \(G_{\lambda} \):

\# nodes = \(N (DN^4)^{\ell} \)

degree is \(O(1) \)

= \(\text{poly}(N) \)

Lemma: \(\lambda(G_\lambda) \leq \frac{1}{2} \) so diameter is small

Use alg in beginning of class

on \(G_\lambda \)