Today's lecture:

The PAC learning model
motivation-definition
Occam's razor
Learning conjunctions
(if time: begin learning via Fourier representation)

Learning how to formalize?

Example oracle $\text{Ex}(f)$

Goal: output f is too hard?
output h s.t. f is ϵ-close to h

$\Pr_{x \in \Omega} \left[f(x) = h(x) \right] \geq 3 - \epsilon$
def given hypothesis h, error of h with respect to f is $\text{error}(h) = \Pr_{x \sim D} [f(x) \neq h(x)]$

f is ε-close to h wrt. uniform on D

Observe if f arbitrary then nontrivial learning is impossible

What if f is in a class of functions C?

def uniform distribution learning algorithm for concept class C is algorithm A st.

A is given $\varepsilon, \delta \Rightarrow$ access to $E_x(f)$ for $f \in C$

A outputs h st. with prob $\geq 1 - \delta$

error(h) wrt. f is $\leq \varepsilon$ according to f

h is ε-close to f
Parameters of interest

- m # samples used by A "sample complexity"
- ϵ accuracy parameter
- δ confidence parameter
- runtime hope for $\text{poly} \left(\log \text{ (domain size)}, \frac{\epsilon}{\delta} \right)$
- description of h: $|C|$
 - similar to description of all $f \in \mathcal{C}$?
 - (proper learning)
 - at least should be "compact"
 - $O(\log |C|)$ efficient to evaluate

Remarks

- dependence on δ needn't be more than
 - $O \left(\log \left(\frac{1}{\delta} \right) \right)$
- uniform dist is a special case
Occam's Razor

learning is easy!

wrt sample complexity

not runtime

brute force algorithm

* draw \(M = \frac{1}{\varepsilon} \left(\ln |C| + \ln \frac{1}{\delta} \right) \) samples

* search over all \(h \in C \) until

 find one that labels all examples correctly. Output \(h \).

 (choose arbitrarily if \(\varepsilon > 1 \))

behavior:

examples come from \(f \in C \)

good to output \(f \)

bad to output \(h \) s.t.

\(h \neq f \) not \(\varepsilon \)-close
h is "bad" if error (h) wrt $f \geq \varepsilon$

\[
\Pr[\text{bad } h \text{ consistent with examples}]
\leq (1-\varepsilon)^M
\]

\[
\Pr[\text{any bad } h \text{ consistent with examples}]
\leq |C|^M (1-\varepsilon)^M \quad \text{union bound}
\]

\[
\leq |C|^M \cdot \frac{1}{e} \left(\ln |C| + \frac{1}{8} \right)
\]

\[
\leq 8
\]

\[
\Rightarrow \text{ unlikely to output any bad } h
\]

Proof applies to learning under any distribution
Once we have a good hypothesis \(h \):

1) can predict values of \(f \) on new random inputs \(\Pr_{x \in \mathcal{X}}[f(x) = h(x)] \geq 1 - \varepsilon \)

2) can compress description of samples

\[(x_1, f(x_1)), (x_2, f(x_2)), \ldots, (x_m, f(x_m)) \mid (\log |D| - \log |R|)
\]

\[\downarrow\]

\[x_1 \ldots x_m, \text{description of } h \mid m \log |D| + \log |C|\]

\[\text{learning } \Rightarrow \text{ prediction } \Rightarrow \text{ compression}\]

Occam's Razor: simplest explanation is best
An efficient learning algorithm

\[C = \text{conjunctions over } \{0,1\}^n \]

i.e. \(f(x) = x_1 \land \neg x_3 \land (x_1 \lor x_3) \)

Observe: how to distinguish

\[f(x) = x_1 \land \cdots \land x_n \]

from \(f(x) = 0 \)

satisfying \(\sum \text{need } \approx 2^n \text{ samples} \)

\(\Rightarrow \) can't hope for poly time \(\pm \) 0-error

Brute force algorithm: (i.e., alg in Occam's razor)

try each \(f \in C \)

\(|C| \approx 2^n \)

union bound \(\Rightarrow \) need \(\Omega \left(\frac{1}{\varepsilon^2} \ln 2^n + \ln \frac{1}{\delta} \right) \) samples

Poly time algorithm

Simplifying assumption:

Assume \(\Pr_{x \in \{0,1\}^n}[f(x) = 1] > \varepsilon \) in expectation

\(\Rightarrow \) in a sample of size \(m \)

\(\geq \varepsilon m \) many "positive" examples
Algorithm:

Take N examples, K of which are "positive" $\mathcal{P}(W) = 1$

let $V = \exists$ vars set same way in each positive example 3

$V = \{1, 2, 3\}$

output $h(x) = \bigwedge_{i \in V} x_i$

$h(x) = \overline{x_1 \lor x_2}$

Behavior:

$f(x) = \overline{x}$

for i in conjunction:

must be set same way in each positive example \Rightarrow in V

for i in conjunction:

$Pr[i \in V] \leq Pr[i \text{ set same in each of } K \text{ positive examples}]$

$\leq \frac{1}{2^K} + \frac{1}{2^K} = \frac{1}{2^{K-1}}$

$Pr[\text{any } i \text{ not in conjunction survives}]$

$\leq \frac{n}{2^{K-1}}$

≤ 8 if pick $K = \log_2 \frac{n}{8}$
\[N \left(\log \frac{1}{\delta} \right) \] positive examples
\[\Rightarrow \quad N \left(\frac{1}{2} \log \frac{1}{\delta} \right) \] total examples suffice.

More general algorithm:

Using \(\text{poly}(\frac{1}{\delta}) \) samples

- estimate \(\Pr[f(\omega) = 1] \) to additive error \(\pm \frac{\epsilon}{q} \)
- if estimate \(\leq \frac{\epsilon}{2} \), output \(h = 0 \)

\[\Rightarrow \quad \Pr[f(\omega) = 1] \geq \frac{\epsilon}{2} + \frac{\epsilon}{q} > \frac{3}{q} \]

... good answer

0.o., continue

\[\Rightarrow \quad \Pr[f(\omega) = 1] \geq \frac{\epsilon}{2} - \frac{\epsilon}{q} \geq \frac{\epsilon}{q} \]

\[\Rightarrow \quad \text{see positive example every} \frac{1}{\delta} \text{ samples} \]

\[\Rightarrow \quad \text{above algorithm is efficient} \]