6.842 Randomness and Computation March 31, 2022

Homework 4
Lecturer: Ronitt Rubinfeld Due Date: April 18, 2022

Homework guidelines: You may work with other students, as long as (1) they have not yet
solved the problem, (2) you write down the names of all other students with which you discussed
the problem, and (3) you write up the solution on your own. No points will be deducted, no
matter how many people you talk to, as long as you are honest. If you already knew the answer
to one of the problems (call these ”famous” problems), then let me know that in your solution
writeup — it will not affect your score, but will help me in the future. It’s ok to look up famous
sums and inequalities that help you to solve the problem, but don’t look up an entire solution.

The following problem is not for turning in — just for fun!

1. (Quadratic non-residuosity) Let Z be the group of integers that are relatively prime
with n. An element s € Z; is said to be a quadratic residue modulo n if there exists
r € Z¥ s.t. s = r2 mod n. Give a private-coin interactive proof system for the language
of pairs (s,n) such that s is not a quadratic residue modulo n.

The following problems are for turning in:

1. Random bipartite graphs are good vertex expanders: A graph G = (V,E) is
called an (n,d, c)-vertex expander if it has n vertices, the maximum degree of a vertex is
d and for every subset W C V of cardinality |W| < n/2, the inequality |N(W)| > c|W|
holds, where N (W) denotes the set of all vertices in V' \ W adjacent to some vertex in W.
By considering a random bipartite 3-regular graph on 2n vertices obtained by picking 3
random permutations between the 2 color classes, one can prove that there exists ¢ > 0
such that for every n there exists a (2n, 3, ¢)-vertex expander.

For this homework, you are asked to prove that for any subset L of size at most n/2 of the
“left vertices”, (with constant probability) there are at least (1 + €)|L| “right” neighbors.
In other words, you should show that the construction succeeds with constant probability
(you can use 1/2 for instance), for some sufficiently small constant e = ©(1).

Note that it is fine to admit multi-edges in the construction.

2. Testing Dictator functions: Dictator functions, also called projection functions, are
the functions mapping {+1, —1}" to {+1,—1} of the form f(z) = z; for ¢ in [n].

Consider the following test for whether a function f is a dictator: Given parameter 4,
the test chooses z,y,z € {1,—1}" by first choosing x,y uniformly from {1, —1}", next
choosing w by setting each bit w; to —1 with probability § and +1 with probability 1 —§
(independently for each i), and finally setting z to be xoyow, where o denotes the bitwise
multiply operation. Finally, the test accepts if f(z)f(y)f(z) = 1 and rejects otherwise.

(a) Show that the probability that the test accepts is § + %ng[n](l —20)I51£(S)3.



(b) Show that if f is a dictator function, then f passes with probability at least 1 — 4.

(c) Show that if f passes with probability at least 1 — e then there is some S such that
f(9) is at least 1 — 2¢ and such that f is e-close to xgs.

(d) Why isn’t this enough to give a dictator test? (i.e., what non-dictators might pass?)
Give a simple fix.

3. Complexity of Confident Learning: Show that if there is a PAC learning algorithm for
a class C' with running time poly(logn,1/e,1/§), then there is a PAC learning algorithm
for C' with running time dependence on ¢ (the confidence parameter) that is only log 1/
— i.e., the “new” PAC algorithm should have run-time poly(logn,1/e,logl/§). You can
assume that the learning algorithm is over the uniform distribution on inputs, although
the claim is true in general.

Note that, in general, the sample complexity is upper bounded by the running time.

4. Occam Learning of Decision Lists: We are given a function f : {0,1}" — {0,1}
which is known to be a decision list (a special case of the decision trees we studied in
class): Concretely, f must be constructed from a sequence of decisions, each of which
relies on only one literal (see Figure 1).

Z; Xy T e o o €Iy

ookl °

Figure 1: A sample decision list function.

(a) Starting with a set of samples S show how to find a consistent decision list h, such
that for all x € S, we have h(x) = f(x). Note that there may be more than one
decision list that is consistent with the data, but proof of Occam’s razor shows that
all consistent decision lists must be close to f. What value of |S| is necessary to
ensure (€,9) PAC learning?

(b) Present an efficient (runtime polynomial in n) algorithm to find a decision list h
such that, with probability at least 1 — 9:

Pxp [f(x) # h(x)] <€

Hint: Start with an empty decision list, and gradually add more literals, along with
their consequences (the red output ).



