Due Date: April 27, 2022

Homework 5

- 1. (Noise sensitivity vs. Fourier coefficients Show that any $f : \{\pm 1\}^n \to \{\pm 1\}$ satisfies

$$NS_{\epsilon}(f) = \frac{1}{2} - \frac{1}{2} \sum_{S} (1 - 2\epsilon)^{|S|} \hat{f}(S)^2$$

2. (Influence of variables on functions) For $x = (x_1, \ldots, x_n) \in \{\pm 1\}^n$, let $x^{\oplus i}$ be x with the *i*-th bit flipped, that is,

$$x^{\oplus i} = (x_1, \dots, x_{i-1}, -x_i, x_{i+1}, \dots, x_n).$$

The influence of the *i*-th variable on $f : \{\pm 1\}^n \to \{\pm 1\}$ is

$$\operatorname{Inf}_{i}(f) = \Pr_{x} \left[f(x) \neq f(x^{\oplus i}) \right].$$

The total influence of f is

$$\operatorname{Inf}(f) = \sum_{i=1}^{n} \operatorname{Inf}_{i}(f).$$

A function $f : \{\pm 1\}^n \to \{\pm 1\}$ is monotone if for all $x, y \in \{\pm 1\}^n$ such that $x_i \leq y_i$ for each $i, f(x) \leq f(y)$.

- (a) Show that for any monotone function $f : \{\pm 1\}^n \to \{\pm 1\}$, the influence of the i^{th} variable is equal to the value of the Fourier coefficient of $\{i\}$, that is $\inf_i(f) = \hat{f}(\{i\})$.
- (b) Show that the majority function $f(x) = \operatorname{sign}(\sum_i x_i)$ maximizes the total influence among *n*-variable monotone functions mapping $\{\pm 1\}^n$ to $\{\pm 1\}$, for *n* odd.
- 3. Consider the sample complexity required to learn the class of monotone functions mapping $\{+1, -1\}^n$ to $\{+1, -1\}$ over the uniform distribution (without queries).
 - (a) Show that

$$\sum_{|S|\geq Inf(f)/\epsilon} \widehat{f}(S)^2 \leq C \cdot \epsilon$$

where C is an absolute constant.

(b) Show that the class of monotone functions can be learned to accuracy ε with n^{Θ(√n/ε)} = 2^{Õ(√n/ε)} samples under the uniform distribution (where the confidence parameter δ is some small constant).

Hint: You can use the previous problem.

4. (Almost k-wise independent random variables) Let $\epsilon \in (0,1)$ and $k \in [n]$. A random vector $(X_1, \ldots, X_n) \in \{\pm 1\}^n$ is said to be (ϵ, k) -wise independent if the restriction of (X_1, \ldots, X_n) to any subset of k coordinates in [n] is ϵ -close to the uniform distribution

on $\{0,1\}^{k,1}$ Note that (0,k)-wise independence coincides with our usual notion of kwise independence. The goal of this problem is to show that any (ϵ, k) -wise independent distribution is $O(\epsilon n^k)$ - close to some k-wise independent distribution.

You may assume that if for all $S \subseteq [n]$ where $|S| \leq k$, we have $\mathbb{P}_{x \sim \mu} [\Pi_{i \in S} x_i = 0] = \frac{1}{2}$, then μ is k-wise independent over $\{\pm 1\}^n$.

- (a) Given a random variable $X = \{X_1, X_2, \dots, X_n\}$ such that X is (ϵ, k) -wise independent, and a subset S with $|S| \leq k$, construct a random variable Y that satisfies
 - $\mathbb{P}[\Pi_{i \in S} Y_i = 0] = \frac{1}{2}$
 - Y is at most ϵ -far from X
- (b) Show that there exists a random variable Z which is k-wise independent, such that Z is at most $\epsilon \cdot n^k$ far from X.

 $[\]overline{\Delta(p,q)} := \frac{1}{2} \sum_{x \in \{\pm 1\}^k} |p(x) - q(x)| = \max_{S \subseteq \{0,1\}^k} (p(S) - q(S)) \text{ is at most } \epsilon.$