Homework 5

Lecturer: Ronitt Rubinfeld

1. (Noise sensitivity vs. Fourier coefficients Show that any $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ satisfies

$$
N S_{\epsilon}(f)=\frac{1}{2}-\frac{1}{2} \sum_{S}(1-2 \epsilon)^{|S|} \hat{f}(S)^{2}
$$

2. (Influence of variables on functions) For $x=\left(x_{1}, \ldots, x_{n}\right) \in\{ \pm 1\}^{n}$, let $x^{\oplus i}$ be x with the i-th bit flipped, that is,

$$
x^{\oplus i}=\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right) .
$$

The influence of the i-th variable on $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is

$$
\operatorname{Inf}_{i}(f)=\operatorname{Pr}_{x}\left[f(x) \neq f\left(x^{\oplus i}\right)\right] .
$$

The total influence of f is

$$
\operatorname{Inf}(f)=\sum_{i=1}^{n} \operatorname{Inf}_{i}(f)
$$

A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is monotone if for all $x, y \in\{ \pm 1\}^{n}$ such that $x_{i} \leq y_{i}$ for each $i, f(x) \leq f(y)$.
(a) Show that for any monotone function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$, the influence of the $i^{\text {th }}$ variable is equal to the value of the Fourier coefficient of $\{i\}$, that is $\inf _{i}(f)=\hat{f}(\{i\})$.
(b) Show that the majority function $f(x)=\operatorname{sign}\left(\sum_{i} x_{i}\right)$ maximizes the total influence among n-variable monotone functions mapping $\{ \pm 1\}^{n}$ to $\{ \pm 1\}$, for n odd.
3. Consider the sample complexity required to learn the class of monotone functions mapping $\{+1,-1\}^{n}$ to $\{+1,-1\}$ over the uniform distribution (without queries).
(a) Show that

$$
\sum_{|S| \geq \operatorname{Inf}(f) / \epsilon} \hat{f}(S)^{2} \leq C \cdot \epsilon
$$

where C is an absolute constant.
(b) Show that the class of monotone functions can be learned to accuracy ϵ with $n^{\Theta(\sqrt{n} / \epsilon)}=$ $2^{\tilde{O}(\sqrt{n} / \epsilon)}$ samples under the uniform distribution (where the confidence parameter δ is some small constant).
Hint: You can use the previous problem.
4. (Almost k-wise independent random variables) Let $\epsilon \in(0,1)$ and $k \in[n]$. A random vector $\left(X_{1}, \ldots, X_{n}\right) \in\{ \pm 1\}^{n}$ is said to be (ϵ, k)-wise independent if the restriction of (X_{1}, \ldots, X_{n}) to any subset of k coordinates in $[n]$ is ϵ-close to the uniform distribution
on $\{0,1\}^{k} .{ }^{1}$ Note that $(0, k)$-wise independence coincides with our usual notion of k wise independence. The goal of this problem is to show that any (ϵ, k)-wise independent distribution is $O\left(\epsilon n^{k}\right)$ - close to some k-wise independent distribution.
You may assume that if for all $S \subseteq[n]$ where $|S| \leq k$, we have $\mathbb{P}_{x \sim \mu}\left[\Pi_{i \in S} x_{i}=0\right]=\frac{1}{2}$, then μ is k-wise independent over $\{ \pm 1\}^{n}$.
(a) Given a random variable $X=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ such that X is (ϵ, k)-wise independent, and a subset S with $|S| \leq k$, construct a random variable Y that satisfies

- $\mathbb{P}\left[\Pi_{i \in S} Y_{i}=0\right]=\frac{1}{2}$
- Y is at most ϵ-far from X
(b) Show that there exists a random variable Z which is k-wise independent, such that Z is at most $\epsilon \cdot n^{k}$ far from X.

[^0]
[^0]: ${ }^{1}$ By saying that two distributions p and q with support $\{0,1\}^{k}$ are ϵ-close, we mean that the statistical distance $\Delta(p, q):=\frac{1}{2} \sum_{x \in\{ \pm 1\}^{k}}|p(x)-q(x)|=\max _{S \subseteq\{0,1\}^{k}}(p(S)-q(S))$ is at most ϵ.

