6.842: Randomness and Computation [1]

Day 1: January 31, 2022
Scribe: Priya Malhotra

1 The Probabilistic Method

Some mathematical objects either completely exist or do not exist at all. These objects have binary probabilities of 0 or 1 . In these cases, by showing that the probability of such an object existing is greater than 0 , we can prove it's existence.

1.1 2-Colored sets

Let X be a set of elements. We have m subsets of $X: S_{1}, S_{2}, \cdots, S_{m} \subseteq X$, where each S_{i} contains l elements from X.

Question 1.1. Can we 2-color X (meaning assign each element of X a color) such that each S_{i} has elements of both colors (is not monochromatic)?

Example 1.2. This example of X, where $m=3$ and $l=3$, has a 2-coloring:

Example 1.3. This example of X, where $m=3$ and $l=2$, cannot be 2 -colored:

Theorem 1.4. If $m<2^{l-1}$, then there will exist a valid 2 -coloring of X
The proof intuition for that is that there are so many different ways to two color X , that even by randomly coloring nodes, there will be a slight (even if extremely unlikely) chance that a valid 2 -coloring assignment is produced. In example 1.1 , we have that $3<2^{3-1}$ and there is indeed a proper 2-coloring. In example 1.2, $3<2^{2-1}$, and there is not a proper 2-coloring.

Proof. Randomly color the elements of X purple and green, independently and identically distributed, each with probability of half. In order to prove that this construction will give us a valid 2-coloring with a non-zero probability, we need to look at the probabilities for each set.

For each set i, the probability that S_{i} is monochromatic is simply the probability that all l elements were either colored all red or all blue, each of which happens with a probability of $\frac{1}{2^{t}}$.

$$
\operatorname{Pr}\left[S_{i} \text { is monochromatic }\right]=\frac{1}{2^{l}}+\frac{1}{2^{l}}=\frac{1}{2^{l-1}}
$$

We can use a union bound ${ }^{\mathrm{i}}$ over all i sets to get an upper bound on the probability that there exists a monochromatic set:

$$
\operatorname{Pr}\left[\exists i \text { such that } S_{i} \text { is monochromatic }\right] \leq \sum_{i} \operatorname{Pr}\left[S_{i} \text { is monochromatic }\right] \leq \frac{m}{2^{l-1}}<1
$$

Because there are m sets their probabilities of being monochromatic (each $\frac{1}{2^{l-1}}$) get summed m times. We can conclude that $\frac{m}{2^{l-1}}<1$ by the theorem's initial assumption that $m<2^{l-1}$.

We can now take the complement to find the probability that all S_{i} are 2-colored.

$$
\operatorname{Pr}\left[\text { all } S_{i} \text { are 2-colored }\right]=1-\operatorname{Pr}\left[\exists i \text { such that } S_{i} \text { is monochromatic }\right]>0
$$

Because we have a non-zero probability, we know that there exists a 2-coloring of X that gives all m valid non-monochromatic sets S_{i}.

[^0]This probabilistic method can tell us that there exists some valid 2-coloring, but gives us no insight on what this 2-coloring may actually be. Say we modified the theorem to be such that if $m<2^{l-2}$, then there exists a proper 2 -coloring. Then this would change the final conclusion to mean that the probability that all S_{i} are 2 -colored is greater than half, so a random coloring would give us a stronger probability that we end up with a valid 2 -coloring. This would mean that the expected number of random 2-colorings we would need to check is 2 .

1.2 Dominating Set

Definition 1.5. Given a graph $G=(V, E), U \subseteq V$ is a "dominating set" if for every node $v \in$ $V \backslash U, v$ has at least one neighbor in U.

Remark 1.6. Finding the minimum size of a dominating set is $N P$-hard - one of the first known such problems.

Theorem 1.7. G has minimum degree \triangle, then G has a dominating set of size $\leq \frac{4 n \cdot \ln (4 n)}{\triangle+1}$
Proof. Construct \hat{U} : put each $v \in V$ into \hat{U} independently with probability $\boldsymbol{p}=\frac{\ln (4 n)}{\triangle+1}$
Is \hat{U} a dominating set?
For $w \in V, \operatorname{Pr}[w$ has no neighbor in \hat{U} and is not in $\hat{U}] \leq(1-p)^{\triangle+1}$ (using the independence in constructing \hat{U})

We now consider $\operatorname{Pr}[\exists w \in V$ such that w has no neighbor in \hat{U} and w not in $\hat{U}]$ ii
$\operatorname{Pr}[\exists w \in V$ such that w has no neighbor in \hat{U} and w not in $\hat{U}] \leq n \cdot(1-p)^{\triangle+1}$

$$
\begin{aligned}
& \leq n\left(1-\frac{\ln (4 n)}{\triangle+1}\right)^{\left(\frac{\Delta+1}{\ln (4 n)}\right) \cdot \ln (4 n)} \\
& \approx n \cdot e^{-\ln (4 n)} \\
& =n \cdot \frac{1}{4 n} \\
& =\frac{1}{4}
\end{aligned}
$$

Note, the above holds because $\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{x} \rightarrow \frac{1}{e}$. So, $\operatorname{Pr}[\hat{U}$ is not a dominating set $] \leq \frac{1}{4}$ How big is \hat{U} ?

$$
\begin{gathered}
E[\hat{U}]=n \cdot p \\
\operatorname{Pr}[|\hat{U}|>4 n p] \leq \frac{1}{4}
\end{gathered}
$$

[^1]by Markov's inequality.
So $\operatorname{Pr}\left[\hat{U}\right.$ is a Dominating Set of size $\left.\leq \frac{4 n \cdot \ln (4 n)}{\triangle+1}\right] \geq 1-\frac{1}{4}-\frac{1}{4} \geq \frac{1}{2}>0$, which means it exists!

1.3 Sum Free Subsets

A is a subset of positive integers (>0)
Definition 1.8. A is "sum free" is $\nexists a_{1}, a_{2}, a_{3} \in A$ such that $a_{1}+a_{2}=a_{3}$
Theorem 1.9. (Erdös '65) $\forall B=\left\{b_{1}, \cdots, b_{n}\right\} \exists$ sum-free $A \subseteq B$ such that $|A|>\frac{n}{3}$
Notation: $[n]=\{1,2, \cdots, n\}$
$B=[n], A=\left\{x \mid x \equiv 1 \bmod 3\right.$ and $A^{\prime}=\left\{\left\lceil\frac{n}{2}\right\rceil, \cdots, n\right\}$
Proof. Without loss of generality, b_{n} is the maximum element in B. Pick prime $p>2 b_{n}$ such that $p \equiv 2 \bmod (3)$ (i.e. $p=3 k+2$ for some k).

Let $C=\{k+1, \cdots, 2 k+1\}$, which is the "middle third"

Number theory reminder: $\mathbb{Z}_{p}=\{0, \cdots, p-1\}$ and $\mathbb{Z}_{p}^{*}=\{1, \cdots, p-1\}$. Every value in \mathbb{Z}_{p}^{*} has exactly one multiplicative inverse.
Example 1.10. The multiplicative inverses in the values of $\mathbb{Z}_{3}^{*}=\{1,2\}$ are themselves:
Observe, $1 \cdot 1 \equiv 1 \bmod 3$ and $2 \cdot 2 \equiv 1 \bmod 3$
Observation 1.11. 1. $C \subseteq \mathbb{Z}_{p}^{*}$
2. C is sum-free even in \mathbb{Z}_{p}.

Say we take the largest element in $C, 2 k+1$, and add it together twice, then $2 k+1+2 k+1 \equiv$ $4 k+2 \bmod 3 k+2 \equiv k$. Even this element does not wrap back around to a value in C (because the smallest element of C is $k+1$).
In addition, any pair of elements in C will add to an integer that is larger than the maximum element of C.
3. $\frac{|C|}{p-1}=\frac{k+1}{p-1}=\frac{k+1}{3 k+1}>\frac{1}{3}$

Notation: ϵ_{R} means picking an element randomly.

Observation 1.12. Sum-freeness extends to linear functions of elements:
If $x_{1}+x_{2}=x_{3}$, then $a \cdot x_{1}+a \cdot x_{2}=a \cdot x_{3}$
We will use this notion "backwards."
Construction A : pick $x \in_{R}\{1, \cdots, p-1\}=\mathbb{Z}_{p}^{*}$, use x to define a (random) linear map $f_{x}(a) \equiv x \cdot a \bmod p$

Let $A_{x}=\left\{b_{i}\right.$ such that $\left.f_{x}\left(b_{i}\right)=x \cdot b_{i} \bmod p \in C\right\}$
So A_{x} are elements of B in the preimage of C under f_{x}. " x maps the above to the middle third."

Claim 1.13. A_{x} is sum-free.
Proof. If not, then there exists a $b_{i}, b_{j}, b_{k} \in A_{x}$ such that $b_{i}+b_{j}=b_{k}$ so that $x b_{i}+x_{j}=x b_{k} \bmod p$, which means C is not sum-free in \mathbb{Z}_{p}, so we get a contradiction. Therefore, A_{x} is sum-free.

Claim 1.14. $\exists x$ such that $\left|A_{x}\right|>\frac{n}{3}$
Observation 1.15. $\forall y \in \mathbb{Z}_{p}^{*}$ and $\forall i$, exactly one $x \in \mathbb{Z}_{p}^{*}$ satsifies $y \equiv x \cdot b_{i}(\bmod p)$.
Then $\forall y \in \mathbb{Z}_{p}^{*}$ and $\forall i, \operatorname{Pr}_{x}\left[y\right.$ mapped to $\left.b_{i}\right]=\frac{1}{p-1}$.
$\forall i$, this means that $|c|$ choices of x such that $x \cdot b_{i} \bmod p \in C$.
Define $\sigma_{i}^{(x)}= \begin{cases}1 & \text { if } x \cdot b_{i} \bmod p \in C \\ 0 & \text { otherwise }\end{cases}$
$E_{x}\left[\sigma_{i}^{(x)}\right]=\operatorname{Pr}_{x}\left[\sigma_{i}^{(x)}=1\right]=\frac{|c|}{p-1}>\frac{1}{3}$
$\sum_{i} \sigma_{i}^{(x)}$ is the number of b 's that map to C under x.
$E_{x}\left[\left|A_{x}\right|\right]=E_{x}\left[\sum_{i} \sigma_{i}^{(x)}\right]=\sum_{i} E_{x}\left[\sigma_{i}^{(x)}\right]$
Therefore, there exists at least one x such that $\left|A_{x}\right|>\frac{n}{3}$

References

[1] Ronitt Rubinfeld. Massachusetts Institute of Technology, 6.842: Randomness and Computation, 2022. https://people.csail.mit.edu/ronitt/COURSE/S22/index.html.

[^0]: ${ }^{i}$ for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events

[^1]: ${ }^{\text {ii }}$ otherwise \hat{U} is a Dominating Set

