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1 The Probabilistic Method
Some mathematical objects either completely exist or do not exist at all. These objects have binary
probabilities of 0 or 1. In these cases, by showing that the probability of such an object existing is
greater than 0, we can prove it’s existence.

1.1 2-Colored sets
Let X be a set of elements. We have m subsets of X: S1, S2, · · · , Sm ⊆ X , where each Si contains
l elements from X .

Question 1.1. Can we 2-color X (meaning assign each element of X a color) such that each Si

has elements of both colors (is not monochromatic)?

Example 1.2. This example of X , where m = 3 and l = 3, has a 2-coloring:

Example 1.3. This example of X , where m = 3 and l = 2, cannot be 2-colored:
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Theorem 1.4. If m < 2l−1, then there will exist a valid 2-coloring of X

The proof intuition for that is that there are so many different ways to two color X, that even
by randomly coloring nodes, there will be a slight (even if extremely unlikely) chance that a valid
2-coloring assignment is produced. In example 1.1, we have that 3 < 23−1 and there is indeed a
proper 2-coloring. In example 1.2, 3 < 22−1, and there is not a proper 2-coloring.

Proof. Randomly color the elements of X purple and green, independently and identically dis-
tributed, each with probability of half. In order to prove that this construction will give us a valid
2-coloring with a non-zero probability, we need to look at the probabilities for each set.

For each set i, the probability that Si is monochromatic is simply the probability that all l
elements were either colored all red or all blue, each of which happens with a probability of 1

2l
.

Pr[Si is monochromatic] =
1

2l
+

1

2l
=

1

2l−1

We can use a union bound i over all i sets to get an upper bound on the probability that there
exists a monochromatic set:

Pr[∃ i such that Si is monochromatic] ≤
∑
i

Pr[Si is monochromatic] ≤ m

2l−1
< 1

Because there are m sets their probabilities of being monochromatic (each 1
2l−1 ) get summed

m times. We can conclude that
m

2l−1
< 1 by the theorem’s initial assumption that m < 2l−1.

We can now take the complement to find the probability that all Si are 2-colored.

Pr[all Si are 2-colored] = 1−Pr[∃ i such that Si is monochromatic] > 0

Because we have a non-zero probability, we know that there exists a 2-coloring of X that gives
all m valid non-monochromatic sets Si.

ifor any finite or countable set of events, the probability that at least one of the events happens is no greater than
the sum of the probabilities of the individual events
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This probabilistic method can tell us that there exists some valid 2-coloring, but gives us no
insight on what this 2-coloring may actually be. Say we modified the theorem to be such that if
m < 2l−2, then there exists a proper 2-coloring. Then this would change the final conclusion to
mean that the probability that all Si are 2-colored is greater than half, so a random coloring would
give us a stronger probability that we end up with a valid 2-coloring. This would mean that the
expected number of random 2-colorings we would need to check is 2.

1.2 Dominating Set
Definition 1.5. Given a graph G = (V,E), U ⊆ V is a “dominating set" if for every node v ∈
V \ U , v has at least one neighbor in U .

Remark 1.6. Finding the minimum size of a dominating set is NP -hard – one of the first known
such problems.

Theorem 1.7. G has minimum degree △, then G has a dominating set of size ≤ 4n · ln(4n)
△+ 1

Proof. Construct Û : put each v ∈ V into Û independently with probability p =
ln(4n)

△+ 1
Is Û a dominating set?
For w ∈ V , Pr[w has no neighbor in Û and is not in Û ] ≤ (1−p)△+1 (using the independence

in constructing Û )
We now consider Pr[∃w ∈ V such that w has no neighbor in Û and w not in Û ] ii

Pr[∃w ∈ V such that w has no neighbor in Û and w not in Û ] ≤ n · (1− p)△+1

≤ n

(
1− ln(4n)

△+ 1

)( △+1
ln(4n))·ln(4n)

≈ n · e− ln(4n)

= n · 1

4n

=
1

4

Note, the above holds because limx→∞(1− 1
x
)x → 1

e
. So, Pr[Û is not a dominating set] ≤ 1

4

How big is Û?

E[Û ] = n · p

Pr[|Û | > 4np] ≤ 1

4

iiotherwise Û is a Dominating Set
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by Markov’s inequality.

So Pr

[
Û is a Dominating Set of size ≤ 4n · ln(4n)

△+ 1

]
≥ 1− 1

4
− 1

4
≥ 1

2
> 0, which means it

exists!

1.3 Sum Free Subsets
A is a subset of positive integers (> 0)

Definition 1.8. A is “sum free" is ̸ ∃a1, a2, a3 ∈ A such that a1 + a2 = a3

Theorem 1.9. (Erdös ’65) ∀B = {b1, · · · , bn} ∃ sum-free A ⊆ B such that |A| > n
3

Notation: [n] = {1, 2, · · · , n}
B = [n], A = {x | x ≡ 1 mod 3 and A′ = {⌈n

2
⌉, · · · , n}

Proof. Without loss of generality, bn is the maximum element in B. Pick prime p > 2bn such that
p ≡ 2 mod (3) (i.e. p = 3k + 2 for some k).

Let C = {k + 1, · · · , 2k + 1}, which is the “middle third"

Number theory reminder: Zp = {0, · · · , p − 1} and Z∗
p = {1, · · · , p − 1}. Every value in Z∗

p

has exactly one multiplicative inverse.

Example 1.10. The multiplicative inverses in the values of Z∗
3 = {1, 2} are themselves:

Observe, 1 · 1 ≡ 1 mod 3 and 2 · 2 ≡ 1 mod 3

Observation 1.11. 1. C ⊆ Z∗
p

2. C is sum-free even in Zp.

Say we take the largest element in C, 2k+1, and add it together twice, then 2k+1+2k+1 ≡
4k + 2 mod 3k + 2 ≡ k. Even this element does not wrap back around to a value in C
(because the smallest element of C is k + 1).

In addition, any pair of elements in C will add to an integer that is larger than the maximum
element of C.

3.
|C|
p− 1

=
k + 1

p− 1
=

k + 1

3k + 1
>

1

3

Notation: ∈R means picking an element randomly.
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Observation 1.12. Sum-freeness extends to linear functions of elements:
If x1 + x2 = x3, then a · x1 + a · x2 = a · x3

We will use this notion “backwards.”
Construction A: pick x ∈R {1, · · · , p − 1} = Z∗

p, use x to define a (random) linear map
fx(a) ≡ x · a mod p

Let Ax = {bi such that fx(bi) = x · bi mod p ∈ C}
So Ax are elements of B in the preimage of C under fx. “x maps the above to the middle

third.”

Claim 1.13. Ax is sum-free.

Proof. If not, then there exists a bi, bj, bk ∈ Ax such that bi+bj = bk so that xbi+xj = xbk mod p,
which means C is not sum-free in Zp, so we get a contradiction. Therefore, Ax is sum-free.

Claim 1.14. ∃x such that |Ax| > n
3

Observation 1.15. ∀ y ∈ Z∗
p and ∀ i, exactly one x ∈ Z∗

p satsifies y ≡ x · bi( mod p).
Then ∀ y ∈ Z∗

p and ∀ i, Prx[y mapped to bi] =
1

p−1
.

∀i, this means that |c| choices of x such that x · bi mod p ∈ C.

Define σ
(x)
i =

{
1 if x · bi mod p ∈ C
0 otherwise

Ex[σ
(x)
i ] = Prx[σ

(x)
i = 1] = |c|

p−1
> 1

3∑
i σ

(x)
i is the number of b’s that map to C under x.

Ex[|Ax|] = Ex[
∑

i σ
(x)
i ] =

∑
i Ex[σ

(x)
i ]

Therefore, there exists at least one x such that |Ax| > n
3
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