Welcome to

$$
6.842
$$

Randomness $\&$ Computation

Lecturer:
Ronitt Rubinfeld
TA: Shankha Biswas

Today:
Course Overview
The probabilistic method
-hypergraph coloring

- dominating set

What is this course about?

- How can randomness help?
- algorithm design
simpler, faster, new problems
- Show existence of combinatorial objects good solutions, codes, nice graphs
- easy to verify proofs interactive proofs, PCP
- distributed algorithms
- learning algorithms
- testing algorithms
- Do we require randomness?
- Can we use less
- can we do without it?
- in what settings do we need it?
- Settings in which randomness is inherent:
- uniform generation - approximate counting
- learning theory
- testing
- relation to complexity theory
- hardness VS, randomness
- hard core sets
- Tools

Fourier representation
random walks / Markov chains algebraic techniques probabilistic proofs
Lovasz Local Lemma
graph expansion, extractors
Szemeredi Regularity Lemma

The Probabilistic Method
(t excuse for a probability review)

Plan: Show object exists by showing that

Example X is a set of elements

Input Given $\underbrace{\delta_{1}, S_{2}, \ldots, S_{m}}_{\text {each of size } l} \leq X$
Output Can we 2 -color objects in X st.
each set S_{i} not monochromatic? \longleftarrow NP-hard problem!

Important special case: $\quad m<2^{l-1} \quad \begin{aligned} & \text { not too } \\ & \text { may sets }\end{aligned}$
Th if $m<2^{l-1}$, \exists proper 2 -coloring

(note that no other coloring works either)

Proof

- randomly color elts of X red/blue (independently, prob $/ 2$)

$$
\begin{aligned}
& \text { any set } \\
& \text { monochromatic } \\
& \text { - show that } \\
& \text { there is a } \\
& \text { leftover good } \\
& \text { coloring } \\
& \leq \sum_{i} \operatorname{Pr}\left[S_{i} \text { monochromatic }\right] \\
& \leq m \cdot \frac{1}{2^{l-1}} \\
& <\frac{2^{l-1}}{2^{l-1}}=1
\end{aligned}
$$

$\therefore \operatorname{Pr}\left[\right.$ all $S_{i} 2$-colored $]>0$
$\Rightarrow \exists$ setting of colors which gives legal 2 -coloring
ie. there are lots of colorings, but if rule out monochromatic ones, still have some left over. We doit know how many.

Can we explicitly output a
good 2-coloring?

- could try all 2-colorings
"brute force"
(exponential time)
- could make stronger assumption:

Old: Th if $m<2^{l-1}$, \exists proper 2 -coloring
$\measuredangle^{\text {even smaller! }}$
New Th m if $m<2^{l-2}, \exists$ proper 2 -coloring - can fire it quickly!

Since $\operatorname{prob}\left[\exists i\right.$ sf. S_{i} monochromatic $] \leq \frac{m}{2} \mathbb{R} \leq \frac{1}{2}$
how many times do $\left\{\begin{array}{l}\text { so a random coloring of } X \text { is good }\end{array}\right.$ you expect to need with prob $\geq 1 / 2$. $\leftarrow P$
to recolor? $2 \leqslant 1 / p$ (if not good recolor unit you find a

Recall
Given coin with bias p
What is expected number of tosses until see heads? answer: $1 / p$

Note tension between ability to find good solution (NP-hand) polytines liner time....)

Strength of assumptions
(in example: m vs. 2^{l-c})

Another example:
def. given graph $G=(V, E)$
$U \leq V$ is a "dominating set"
if every node $v \in$ Mu has at least one nor in U.

Note: Finding min size dominating set is N^{P}-hard. (in fact one of the |st known...)

The Given G with min degree \triangle.
Then G has a dominating set of size $\leq \frac{4 n \cdot \ln (4 n)}{\Delta+1}$

Pf.
Construct \hat{U} : Place each node $v \in V$ into \hat{U} index. with prob

$$
p \equiv \frac{\ln 4 n}{\Delta+1}
$$

Is \hat{u} a dominating set?
for $\omega \in V, \quad \operatorname{Pr}[\omega$ has no nor in $\hat{U} \alpha$ is not in $\hat{U}]$

$$
\leq(1-p)^{\Delta+1} \leftarrow \begin{gathered}
\text { uses inderestenece } \\
\text { in constructing } u \text { un }
\end{gathered}
$$

$\operatorname{Pr}[\exists$ we V st. w has no nor in $\hat{U}+w$ notin $\hat{U}]$

$$
\begin{aligned}
& \leq n \cdot(1-p)^{\Delta+1} \quad \text { union bnd } \\
& \leq n\left(1-\frac{\ln 4 n}{\Delta+1}\right)^{\frac{\Delta+1}{\ln \cdot n} \ln n n} \approx n \cdot \underbrace{e^{-\ln 4 n}}_{\frac{1}{4 n}}=\frac{1}{4}
\end{aligned}
$$

Useful:

$$
\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{x} \rightarrow \frac{1}{e}
$$

So prob $[\hat{u}$ is not a dominating set $] \leq 1 / 4$

How bin is \hat{U} ?

$$
\begin{aligned}
& E[|\hat{u}|]=n \cdot p \leftarrow \text { why? } \\
& \operatorname{Pr}[|\hat{u}|>4 \cdot n p]<\frac{1}{4} \\
& \text { recall: Markovis } \neq \\
& \operatorname{Pr}[x>\text { c } E[x]] \leq \frac{1}{c} \\
& \text { let } \sigma_{\omega}=\{1 \text { if } \psi \text { placadin } \hat{U} \\
& E\left[\sigma_{u}\right]=P \\
& |\hat{u}|=\sum_{v \in v} \sigma_{v} \\
& E[|\hat{u}|]=E\left[\Sigma \sigma_{u}\right]=\sum E\left[\sigma_{w}\right] \\
& =\Sigma p=n \cdot p
\end{aligned}
$$

So $\operatorname{Pr}\left[\hat{u}\right.$ is dominating set of size $\left.\leq \frac{4 n \ln 4 n}{\Delta+1}\right]$

$$
\begin{aligned}
& \geq 1-\frac{1}{4}-\frac{1}{4} \leftrightarrows \\
& \geq 1 / 2>0 \quad(2 \text { baderant: }
\end{aligned}
$$

so it exists!
-not D.S. prob $\leq 1 / 4$

- too big porbs/4

A third example: Sum-free subsets
A is subset of positive integers (>0)
Def. A is "sum-free" if $\ddagger a_{1}, a_{2}, a_{3} \in A$ st. $a_{1}+a_{2}=a_{3}$

The (Erdös '65)
$\forall B=\left\{b_{1} \cdots b_{n}\right\} \quad \exists$ sum-free $A \leq B$
st. $|A|>\frac{n}{3}$

Example

$$
B=\{1 \ldots n\}
$$

can take $A=\left\{\left\lceil\frac{n}{2}\right\rceil, \ldots, n\right\}$

Proof
wog b_{n} is max
pick prime $p>2 b_{n}$ st. $p \equiv 2(\bmod 3)$ ie. $p=3 k+2$ for some int k

Let $C=\{k+1, . ., 2 k+1\}$ "middle third"

$$
\begin{aligned}
& \mathbb{Z}_{p}=\{0, \ldots, p-1\} \\
& \mathbb{Z}_{p}^{*}=\{1, \cdots, p-1\}
\end{aligned}
$$

group \downarrow unique has multiplicative inverses $\bmod p$. (need p to be prime for this)
e.g. $\mathbb{Z}_{3}^{*}=\{1,2\}$
$1 \cdot 1 \equiv 1 \bmod 3$
$2 \cdot 2 \equiv 1 \bmod 3$

Note: (1) $C \subseteq \mathbb{Z}_{p}$
(2) C sum-free, even in \mathbb{Z}_{p}

What if $B \cap C$ is big?
we are done!
Cool idea: Sum-freeness
extends to linear fates of elements
if $\quad x_{1}+x_{2}=x_{3}$
then $a \cdot x_{1}+a \cdot x_{2}=a \cdot x_{3}$

So what??

$$
000
$$

we need Sum-freeness of B, not linfctins of $B 1$
we will use it "bac kwords"!

Constructing A :

$$
\text { pick } x \in_{R}\{\mid . . \beta-1\}
$$

then use x to define (random) linear map $f_{x}(a)=x \cdot a \bmod p$

$$
\text { let } A_{x} \leftarrow\{b_{i} \text { st. } \underbrace{x \cdot b_{i} \bmod p}_{f_{x}\left(b_{i}\right)} \in C\}
$$

so A_{x} are elts of B in preimage of C under f_{x} "X maps these guys to middle third"

Claim 1 A_{x} is sum-free
Pf. if not, then
let $b_{i}, b_{j}, b_{k} \in A_{x}$ s.t. $b_{i}+b_{j}=b_{k}$
all in C
then $x \cdot b_{i}+x \cdot b_{j}=x \cdot b_{k}(\bmod p)$ also by construction
$\Rightarrow C$ not sumfree in \mathbb{Z}_{p}

Claim 2 $\exists x$ st. $\left|A_{x}\right|>\frac{n}{3}$
Pf
follows $\left\{\begin{array}{l}\text { Fact } \\ \text { f ow }\end{array} \quad \mathbb{Z}_{p}^{*}+\forall i\right.$
follows
from
unique
exactly one
$y \in \mathbb{Z}_{p}^{*}$ satisfies unique
inverse property when pis prime Fact \Rightarrow

$$
\forall y \in \mathbb{Z}_{p}^{*}, \forall i \operatorname{Pr}_{x}\left[y \text { mapped to } b_{i}\right]=\frac{1}{p-1}
$$

$\forall i$, fact $\Rightarrow|c|$ choices of x st.

$$
x \cdot b_{i}(\bmod p) \in C
$$

define $\sigma_{i}^{(x)} \leftarrow \begin{cases}1 & \text { if } x \cdot b_{i} \bmod p \in C \\ 0 & \text { o.w. }\end{cases}$

$$
E_{x}\left[\sigma_{i}^{(x)}\right]=\operatorname{Pr}_{x}\left[\sigma_{i}^{(x)}=1\right]=\frac{|c|}{p-1}>\frac{1}{3}
$$

$$
\begin{aligned}
E_{x}\left[\left|A_{x}\right|\right] & =E_{x}\left[\sum_{i} \sigma_{i}^{(x)}\right]=\sum_{i} E_{x}\left[\sigma_{i}^{(x)}\right] \\
& >\frac{n}{3} \quad \begin{array}{l}
\text { \# of b's that map to } c \\
\text { under s } x
\end{array}
\end{aligned}
$$

\Rightarrow at least one x st. $\left|A_{x}\right|>\frac{n}{3}$

