6.842 Lec 10

- Markov Chains
 - Random walks
 - Stationary Dist.
 - Cover Times
Markov Chain

set of states: \(\Omega \)

\(x_1 \ldots x_t \in \Omega^t \): sequence of visited states

Markovian Property:

\[
P [X_{t+1} = y \mid X_0 = x_0, X_1 = x_1, \ldots, X_t = x_t] = P [X_{t+1} = y \mid X_t = x_t]
\]

Only current state matters NOT how we get there

Transitions independent of time

def: \(P(x,y) = P [X_{t+1} = y \mid X_t = x] \)

Represent w/ “transition matrix”
Example

Important special case:

Transition to uniformly random neighbor

def: Random Walk on $G = (V, E)$ is a sequence S_0, S_1, \ldots of nodes S_i, chosen uniformly from $N(S_i)$ out edges.

Let $d_v = \# \text{ out edges of } v$

$$P(x, y) = \begin{cases} \frac{1}{d_x} & \text{if } (x, y) \in E \\ 0 & \text{o.w.} \end{cases}$$
\[P^t(x, y) = \begin{cases} P(x, y) & \text{if } t = 1 \\ \sum_{z} P(x, z) P^{t-1}(z, y) & \text{if } t > 1 \end{cases} \]
Initial dist. \(\pi^{(0)} = \pi_1^{(0)} \pi_2^{(0)} \ldots \)

\[\pi^{(0)} \xrightarrow{\text{one step}} \pi^{(1)} \xrightarrow{\text{one step}} \pi^{(2)} \ldots \]

\[= \pi^{(0)} \rho \]

\[= \pi^{(1)} \rho \]

\[= \pi^{(2)} \rho^2 \]

\[= \pi^{(0)} \rho^t \]

\[t\text{-step distribution:} \quad \pi^{(0)} \rho^t \]

Does this converge?

Properties

Irreducible \(\Rightarrow\) (strongly connected)

\[\forall x, y \exists t(x, y) \text{ s.t. } p^t(x, y) > 0 \]

Aperiodic: \[\forall x \text{ gcd } \{ t : p^t(x, x) > 0 \} = 1 \]

(\(\text{gcd} \) of possible cycle lengths = 1)

Ergodic: \[\exists t^* \text{ s.t. } \forall t > t^* \quad p^t(x, y) > 0 \]

\[\text{Ergodic } \iff \text{Irreducible } + \text{Aperiodic} \]
Stationary Distribution

\[\Pi \text{ s.t. } \forall x \quad \Pi(x) = \sum_y \Pi(y) P(y, x) \]

or \(\Pi = \Pi P \)

(consider \(P \) s.t. \(\Pi^* \) exists and unique)

\(i.e \) does not depend on \(\Pi^{(0)} \)

Periodic \(\circ \circ \circ \) Reducible \(\circ \circ \circ \)

\((0,1) \rightarrow (1,0) \rightarrow (0,1) \rightarrow \cdots \rightarrow (1/2) \rightarrow (0,1) \rightarrow (1,0) \)

Thm: Ergodic M.C. \(\Rightarrow \) Unique \(\Pi^* \)

Undirected Graph \(G_i = (V, E) \)

\[\Pi^* = \left(\frac{d_{v_1}}{2|E|}, \frac{d_{v_2}}{2|E|}, \ldots \right) \]

- \(\Pi^* \) uniform for \(d \)-reg graphs
 - Also for digraphs when \(\text{indeg} = \text{outdeg} = d \)
- Not true for general digraphs
Hitting Time

\[\text{def: } h_{xy} = \mathbb{E}[\text{#steps to go } x \longrightarrow y] \]

\[h_{xx} : \text{Recurrence time} \]

\[\text{Thm: } h_{xx} = \frac{1}{\Pi^*(x)} \]

\[\text{Pf: Consider a very long walk} \]

\[\Pi^*(x) \text{ fraction of the positions are } x \]

\[\Rightarrow \text{Average gap between occurrences} \]

\[h_{xx} = \frac{1}{\Pi^*(x)} \]

Cover Time

\[C_v(G) = \mathbb{E}[\text{#steps to visit all nodes in } G \text{ starting at } v] \]

\[C(G) = \max_v C_v(G) \]
Cover Time Examples

- $C(K_n) = K_n$ is the complete graph on n vertices
 $= \Theta(n \log n)$ w/self loops at each node

- $C(L_n) = L_n$ is the line graph w/self loops at each node
 $= \Theta(n^2)$

- C (lollipop) $= \Theta(n^3)$

Thm:
$C(G) \leq O(m \log n)$

Pf.
$G \xrightarrow{add \ self \ loops \ (prob \ \frac{1}{2})} G'$

Worst start
$\Theta(n)$ time to reach
$\Theta(n^2)$ time to reach
$\Theta(n^3)$ time to reach
Claim: \[C(G') = 2C(G) \]

Path in \(G' \) \(\xrightarrow{\text{remove self loops}} \) path in \(G \)

\[\mathbb{E}[\# \text{ self loops}] = \frac{1}{2} \cdot \text{length of path} \]

Since \(G' \) is ergodic, it has an unique stationary distribution

Commute Time

\[\text{def } \ C_{xy} = \mathbb{E}[\# \text{ steps for } x \xrightarrow{\cdot} y \xrightarrow{\cdot} x] \]

\[= h_{xy} + h_{yx} \] (linearity of expectation)

Lemma: \(\forall (x, y) \in E \quad C_{xy} \leq O(m) \)

pf: Consider a long walk \(u_1, u_2, u_3, \ldots \)
where \(u_i \in V \) and \((u_i, u_{i+1}) \in E \forall i \)
We look for commutes of the following form $x \rightarrow y \rightarrow o \rightarrow o \rightarrow x \rightarrow y$ commute

Prob of finding (x, y)

\[
\begin{align*}
\mathbb{P}[(u_i, u_{i+1}) = (x, y)] &= \mathbb{P}[u_i = x] \cdot \mathbb{P}[u_{i+1} = y | u_i = x] \\
&= \prod_i^*(x) \cdot \frac{1}{d_x} \\
&= \frac{dx}{2m} \cdot \frac{1}{d_x} = \frac{1}{2m}
\end{align*}
\]

So, expected gap between consecutive occurrences of $x-y$ is $2m$

\[C_{xy} \leq O(m)\]
Finally, consider \(T \subseteq G' \) where \(T \) is a spanning tree \((n-1 \text{ edges})\)

\[
V_0 \ V_1 \ V_2 \ 0 \ 0 \ 0 \ \ V_{2n-2}
\]

DFS traversal of \(T \)

\[\Rightarrow 1 \ 2 \ 1 \ 3 \ 4 \ 1 \ 5 \ 3 \ 1\]

Each edge \((u, v)\) appears twice, as \((u, v)\) & \((v, u)\)

Using the DFS traversal sequence

\[
C(a) \leq \sum_{j=0}^{2n-3} h_{V_j V_{j+1}}
\]

\[
= \sum_{(u,v) \in T} C_{u,v} \quad (C_{uv} = h_{uv} + h_{vu})
\]

\[
= \sum_{(u,v) \in T} O(m) = O(mn)
\]