Lecture 11
undirected st connectivity linear algebra + random walks

Saving random bits via random walks

Last time:
random walks on graphs
Cover time:
$C(G)=\max E[\#$ steps to visit all nodes v in G when stat at v] starting points

Tim $\forall G, \quad C(G)$ is $O(n \cdot m)$

SGt Connectivity (UST-COnn)

Input undirected G nodes s, t

Output if s, t in same conn. comp, "Yes" else "NO"
many ways to solve in poly time what about space?
$R L \equiv$ class of problems solvable by randomized log-space computations
[no charge for input space (raud-only), but can only store const \# pts]
(TM)

The UST-Conn $\in R L$
Algorithm:
start at s
take a random walk for $C \cdot n^{3}$ steps if ever see t output "Yes" else output "No"
Complexity:
time: $O\left(n^{3}\right) \times($ time to pick random nor)
space:
Keep track of:
step counter
space to pick random nor:
e.g. Scan noes α count $d_{u} O(\log n)$ toss d_{u}-sided die to get j scan again to find j th nor total $O(\log n)$

Be havior:
If sit not connected, never output "Yes"
If s, t connected

$$
h_{s, t} \leq C_{s}(\underbrace{\left.G_{s}\right)}_{\substack{\text { connected } \\ \text { component } \\ \text { of s (and } t)}} \leq n^{3}
$$

$\operatorname{Pr}[$ output "no" $] \leq \operatorname{Pr}[$ start at s, walk $c \cdot C_{s}\left(G_{s}\right)$ steps α don't see t]
$=\operatorname{Pr}[$ time to cover graph is $>c$ times its expectation]

$$
\leq \frac{1}{c} \quad(\text { Markov's } \neq)
$$

Comments

- Actually VSTConn $E L!!$ (Reingold)
- Open: is STConn for directed graphs $E L$?

$$
(\Rightarrow R L=L)
$$

we know $R L \in L^{3 / 2}$
recent improvement $R L \in S$ pace $\left(\frac{\log ^{3 / 2} n}{\sqrt{\log _{\lg } n}}\right)$
actually also BP space (log)
due to Wi liam Hora in Random ${ }^{2}$
$\underline{\text { Linear Algebra Review }}$
def v is an eigenvector of A with corresponding eigenvalue λ iff

$$
v A=\lambda v
$$

def \mathcal{L}_{2}-norm of $v=\left(v_{1} \ldots v_{n}\right)=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}$
def $v^{(1)} \cdots v^{(m)}$ orthonormal if

$$
\begin{aligned}
& \underbrace{v^{(i)} \cdot v^{(j n e r} \text { product }}= \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases} \\
&=\sum_{l} v_{l}^{(i)} \cdot v_{l}^{(j)}
\end{aligned}
$$

example $P=$ transition matrix of d-reg undir graph (doubly stochastic)

$$
\left(\begin{array}{lll}
\frac{1}{n} & \ldots & \frac{1}{n}
\end{array}\right) \cdot p=1 \cdot\left(\frac{1}{n} \ldots \frac{1}{n}\right)
$$

doesn't this seem
also $\left(\begin{array}{lll}\frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}}\end{array}\right) \cdot P=1 \cdot\left(\frac{1}{\sqrt{n}} \cdots \frac{1}{\sqrt{n}}\right)$ is more natural? distribution rector

$$
\mathcal{L}_{2} \text { norm }=1 \Rightarrow \text { normal }
$$

so this gets used a lot!

Important Theorem
As in Lake Wobegon," where the women are strong, the men are good looking and all the children are above average", all theorems in this class are IMPORTANT!!

The Transition matrix P real + symmetric

$$
\Rightarrow \exists \text { e-vecs } v^{(1)} \cdots v^{(n)}
$$

forming orthonormal basis with corresponding evalues $\quad 1=\lambda_{1} \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$

$$
\downarrow v^{(1)}=\frac{1}{\sqrt{n}}(1 \ldots 1)
$$

chosen so that $\left\|v^{(1)}\right\|_{2}=1$
(won't prove here)

Useful Facts:
Assume P has all positive entries t execs $v^{(1)} \ldots v^{(n)}$ with corresponding e-vals $\lambda_{1} \cdots \lambda_{n}$

Facts
(1) αP has e-vecs $v^{(1)} \ldots v^{(n)}$ with correspmoming evals $\alpha \lambda_{1}, \alpha, \alpha \lambda_{n}$
(2) $p+1$ " " " " $\lambda_{1}, \ldots, \lambda_{n}+1$
(3) $p^{k} \cdots " \quad \cdot \quad \cdot \quad \lambda_{1}^{k}, \cdots, \lambda_{n}^{k}$
(4) P stochastic $\Rightarrow\left|\lambda_{i}\right| \leq 1 \quad \forall i$

Why?
(1) $v P=\lambda v \Leftrightarrow v \cdot \alpha \cdot P=\lambda \cdot \alpha \cdot P$
(2) $v(P+I)=v P+v I=\lambda v+v=(\lambda+1) v$

Note: add self-loops: $\frac{P+I}{2}=$ "stay put with prob $1 / 2 \alpha$ walk with prob y_{2} "
\Rightarrow new eigen values $\frac{\lambda_{1}+1}{2}, \ldots, \frac{\lambda_{n}+1}{2}$
(3) $v p^{k}=(v-p) p^{k-1}=\lambda v p^{k-1}=\lambda^{2} v p^{k-2}=\ldots=\lambda^{k} v$

$$
k-\text { step walks }
$$

(4) $\forall i$, et $I=\left\{j \mid v_{j}^{(i)}>0\right\}$ Computes $j^{\text {th }}$
then $\lambda \sum_{j \in I} v_{j}^{(i)}=\sum_{j \in I} \sum_{k} v_{k}^{(i)} P_{k j}$ entry of

$$
\leqslant \sum_{j, k} v_{k}^{(i)} P_{k j} \quad \sum_{\text {st } i, k \in I} \begin{aligned}
& \text { since entries of } \begin{array}{l}
\text { not in } \\
\text { are } \leqslant 0
\end{array} \\
& \left(+P_{k j} \text { is a (ways } \geq 0\right)
\end{aligned}
$$

st. $j, k \in I$

$$
\leq \sum_{k \in I} v_{k}^{(i)} \sum_{\substack{\leq 1 \text { since } \\ \text { stochastic }}}^{\sum_{j \in I} P_{i j}} \leq \sum_{k \in I} v_{k}^{(i)}
$$

$$
\Rightarrow \lambda \leq 1
$$

Note if $v^{(1)} \ldots v^{(n)}$ orthonormal basis then
any vector w is expressible as linear Combination of $v^{(i)} s$

$$
W=\sum \alpha_{i} v^{(i)}
$$

\& $L_{2}^{-n o r m}$ of w is $\sqrt{\sum \alpha_{i}^{2}}$
why?

$$
\begin{align*}
\|w\|_{2} & =\sqrt{\sum \alpha_{i} v^{(i) \cdot \sum \alpha_{j} v^{(j)}}} \\
& =\sqrt{\sum_{i, j} \alpha_{i} \alpha_{j} v^{(i)} v^{(j)}} \quad \begin{array}{l}
=0 \text { if } i \neq j \\
=1 \text { if } i=j
\end{array} \\
& =\sqrt{\sum_{i} \alpha_{i}^{2}} \quad \begin{array}{l}
\text { (*) } \\
\text { will use } \\
\text { this soon }
\end{array} \tag{*}
\end{align*}
$$

Recall:
Stationary distribution:
π st. $\pi=\pi P$
(taking more steps in r.w. keeps you in same distribution)
recall: P ergodic $\Rightarrow \pi$ exists a unique
(for graphs, can always take $\frac{P+I}{2}$)

Mixing Times

How long does it take to reach stationary distribution?
def. $\varepsilon>0$
Mixing time, $T(\varepsilon)$, of M.C. A with Stationary dist π is $\min t$ st.

$$
\forall \pi^{(0)}, \quad\left\|\pi-\pi^{(0)} A^{t}\right\|_{1}<\varepsilon
$$

def. M.C. A is rapidly mixing if

$$
T(\varepsilon)=\operatorname{polg}\left(\log _{\uparrow} n, \log 1 / \varepsilon\right)
$$

examples: r.w. on complete graph, random graph note that mixing time of $\frac{P_{T} I}{2}$ is at most $2 \times$ more

The P is transition matrix of undirected, can \rightarrow nonk-partite, dreg connected graph
each Π_{0} is start dist.
π is stationary dist $=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$

$$
\text { so } \pi p=P
$$

Then $\left\|\pi_{0} p^{t}-\pi\right\|_{2} \leq\left|\lambda_{2}\right|^{t}$
exponentially decreasing dist if $1-\lambda_{2}$ is cons!!

Proof
P real, symmetric \Rightarrow
execs $v^{(1)} \ldots v^{(n)}$ are orthonormal basis with e-vals $1=\lambda_{1} \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$

