Lecture 12

- linear algebra + mixing times
- Saving random bits via random walks

From last time:
Linear Algebra Review
def v is an eigenvector of A with corresponding eigenvalue λ iff

$$
v A=\lambda v
$$

def \mathcal{L}_{2}-norm of $v=\left(v_{1} \cdots v_{n}\right)=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}$
def $v^{(\prime \prime} \ldots v^{(m)}$ orthonormal if

$$
\begin{aligned}
& \underbrace{v^{(i)} \cdot v^{(j)}}_{\text {imper product }}= \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases} \\
& =\sum_{l} v_{l}^{(i)} \cdot v_{l}^{(j)}
\end{aligned}
$$

The Transition matrix P real + symmetric

$$
\Rightarrow \exists \text { e-vecs } \quad v^{(1)} \cdots v^{(n)}
$$

forming orthonormal basis with corresponding

$$
\text { devalues } \begin{aligned}
& \quad\left|=\lambda_{1} \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|\right. \\
&+\quad v^{(1)}=\frac{1}{\sqrt{n}}(1 \ldots 1)
\end{aligned}
$$

chosen so that $\left\|r^{(1)}\right\|_{2}=1$
\Rightarrow any vector ω is expressible as linear Combination of $v^{(i)}$'s

$$
w=\sum \alpha_{i} v^{(i)}
$$

$+L_{2}^{\text {norm }}$ of w is $\sqrt{\sum \alpha_{i}^{2}} *$

From last time:
Useful Facts:
Assume P has all positive entries + execs $v^{(1)} \ldots v^{(n)}$ with
Facts corresponding e-vals $\lambda_{1} \cdots \lambda_{n}$
(1) αp has e-vecs $v^{(1)} v^{(n)}$ with cores p molding evals $\alpha \lambda_{11}, \alpha \lambda_{n}$
(2) $P+I$ $\lambda_{1}+1, \ldots, \lambda_{n}+1$
(3) p^{k} $\lambda_{1}^{k}, \cdots, \lambda_{n}^{k}$
(4) P stochastic $\Rightarrow \lambda_{i} \mid \leq 1 \quad \forall i$

Note: add self-loops: $\frac{P+I}{2}=$ "stay put with prob $1 / 2 \alpha$
\Rightarrow new eigen values walk with prob $y_{2} "$
$\frac{\lambda_{1}+1}{2}, \cdots, \frac{\lambda_{n}+1}{2}$

From last time:
Mixing Times

How long does it take to reach Stationary distribution?
def. $\varepsilon>0$
Mixing time, $T(\varepsilon)$, of M.C. A with
Stationary dist π is $\min t$ st.

$$
\forall \pi^{(0)}, \quad\left\|\pi-\pi^{(0)} A^{t}\right\|_{1}<\varepsilon
$$

def. M.C.A is rapidly mixing if

$$
T(\varepsilon)=\operatorname{polg}\left(\log _{\uparrow} n, \log 1 / \varepsilon\right)
$$

The P is transition matrix of undirected, can \rightarrow nonk-partite, d-reg connected graph
Π_{0} is start dist. node
π is stationary dist $=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$

$$
\text { (so } \pi P=\pi \text {) }
$$

Then $\left\|\pi_{0} p^{t}-\pi\right\|_{2} \leq \|\left.\lambda_{2}\right|^{t}$
exponentially decreasing dist if $1-\lambda_{2}$ is cons!!
\Rightarrow rapid mixing
Proof
P real, symmetric \Rightarrow
execs $v^{(1)} \ldots v^{(n)}$ are orthonormal basis with e-vals $1=\lambda_{1} \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$
so any vector, in particular π_{0},
can be expressed as lin comb of $v^{(i)} s$:

$$
\pi_{0}=\sum_{i=1}^{n} \alpha_{i} v^{(i)}
$$

$$
\text { so } \begin{aligned}
\prod_{0} p^{t} & =\sum_{i=1}^{n} \alpha_{i} \underbrace{v^{(i)} \cdot p^{t}} \\
& =\lambda_{i}^{t} v^{(i)} \\
& ={\underset{\sim}{\alpha}}_{\alpha_{1} \lambda_{1}} v^{(1)}+\alpha_{2} \lambda_{2}^{t} v^{(2)}+\ldots \\
& =\frac{1}{\sqrt{n}}=1
\end{aligned}
$$

What is α_{1} ?

$$
\begin{aligned}
& v^{(1)}=\frac{1}{\sqrt{n}}(11 . .1) \\
& \pi_{0} \cdot v^{(1)}=\alpha \underbrace{v^{(1)} \cdot v^{(1)}}_{=1}+\sum_{i=2}^{n} \alpha_{i} \lambda_{i}^{t} \underbrace{v^{(i)} \cdot v^{(1)}}_{=0}=\alpha_{1}
\end{aligned}
$$

also, $\pi_{0} \cdot v^{(1)}=\pi_{0} \cdot \frac{1}{\sqrt{n}}(|1 \ldots|)=\frac{1}{\sqrt{n}} \underbrace{\pi_{0} \cdot(|1 \ldots|)}_{=1}$ So $\quad \alpha_{1}=\frac{1}{\sqrt{n}}$
note that this argument does not use any Knowledge of T_{0}, other then it is a distribution.

Continuing...

$$
\begin{aligned}
& \left\|\pi_{0} p^{t}-\alpha_{1} \cdot v^{(1)}\right\|_{2}=\left\|\sum_{i=2}^{n} \alpha_{i} \lambda_{i}^{t} v^{(i)}\right\|_{2} \\
& =\sqrt{\sum_{i=2}^{n} \alpha_{i}^{2} \lambda_{i}^{2 t}} \quad \text { by }(*) \\
& =\left|\lambda_{2}\right|^{t} \sqrt{\sum_{i=2}^{n} \alpha_{i}^{2}} \quad \text { since }\left|\lambda_{2}\right| z \lambda_{3} \mid \geq \ldots \\
& \leq\left|\lambda_{2}\right|^{t}\left\|\pi_{0}\right\|_{2} \quad \text { by (*) } \quad+\text { since } \sum_{i=1}^{n} \alpha_{i}^{2}>\sum_{i=2}^{n} \alpha_{i}^{2} \\
& \leq\left|\lambda_{2}\right|^{t} \quad \text { since }\|\omega\|_{2} \leq\|\omega\|_{1}=1
\end{aligned}
$$

when entries ≤ 1

Since $\left|\lambda_{2}\right|^{t} \rightarrow 0$
$\alpha_{1} \cdot v^{(1)}=\frac{1}{n} \cdot(1 \ldots 1)$ has to be the stationary distribution

Reducing Randomness via
Random Walks:

For language L,
let of be algorithm sit.
(1) $\forall x \in L \quad \underset{d^{\prime} \text { coins }}{\operatorname{Pr}}[A(x)=1] \geq 99 / 100 \quad$ usually correct
(2) $\forall x \notin L \quad \operatorname{Pr}_{\substack{\left.d_{s}\right\} \\ d i n s}}[A(x)=0]=1 \quad$ alway correct

To get error $<2^{-k}$

Method

1) run K times + output " $X \& L$ " if see 0 else output " $X \in L$ "
2) Use pairwise ind random bits
3) today: use random walks to choose bits
\# random bits used $k \cdot r$

$$
O(k+r)
$$

$$
r+O(k)
$$

Plan

- \forall (random) string in $\{0,1\}^{n}$, assign it to node in graph G
- picking random n-bit string
\Rightarrow picking random node in G easier?
picking several random n-bit strings
\Rightarrow picking several random nodes in f easier?
picking several strings, one of which is "good"
\Rightarrow picking several nodes, ore of which is "good"

Easier!!

The graph G: \longleftarrow we get to pick G!!!

- constant degree d-regular, connected, nonbipastite
- transition matrix P for r.w. on G has $\left|\lambda_{2}\right| \leq \frac{1}{10}$
d-reg \Rightarrow stat dist Π is uniform
- \# nodes $=2^{r} \quad$ corresponds to all possible choices of r random bits

The Algorithm
\# random bits

- Pick random start node $\omega \in\{0,1\}^{r}$
- Repeat K times:
$\omega \leftarrow$ random nor of ω

If $A(x)$ outputs " $x \in L$ ", output " $x \in L$ " that else continue

- Output "X£L"

$$
\text { total: } r+O(k)
$$

Behavior: Claim: error of new algorithm is $\leq\left(\frac{1}{5}\right)^{k}$ for $x \in L$ (shill 0 error for $X \notin L$)

bud case: walk only on "bad strings" \& never reach good strings why is this possible if G arbitrary? eng. line

Proof of Claim
$X \in L$: algorithm never errs (no bad strings) $x \in L$:
most random bits say $x \in L: \geq \frac{99}{100} \cdot 2^{n}$
define $B \equiv\{\omega \mid A(x)$ with random bits $w\}$ is incorrect.
i.. says $X \notin L$
"bad w's"

$$
|B| \leq \frac{2^{r}}{100}
$$

need lin. alg. way of describing walks that stay in bad set:
define N diagonal matrix

$$
N_{W}=\left\{\begin{array}{lll}
1 & \text { if } w \in B \longleftarrow \text { incorrect } \\
0 & 0 . W_{1} & \longleftarrow \text { correct }
\end{array}\right.
$$

For 9 any probability dist:
q. N is??
example:

$$
\left.\begin{array}{l}
q=(\begin{array}{ll}
\frac{1}{4} & \frac{3}{4}
\end{array} \underbrace{\left(\frac{1}{4}\right.} 0
\end{array}\right) \quad N=\left(\begin{array}{cc}
1 & 0 \\
0
\end{array}\right)
$$

9.N deletes weight that finds
a witness to $X \in L$

$$
\|q \cdot N\|_{1}=\operatorname{Pr}_{w \in q}[w \text { is bad }]
$$

Can compose:
$\|q \cdot P N\|_{1}=\operatorname{Pr}_{w \in q}[$ start at q, take a step \& land on "bud"]
\| $\left\|(P N)^{i}\right\|_{\mathcal{L}}=\operatorname{Pr}_{w \in q}[$ startat q, take i steps a each is "bad"] bad. this just hurtsus, so ok to ignore.
$\underline{L e m m a} \forall \pi \quad\|\Pi P N\|_{2} \leq \frac{1}{5}\|\pi\|_{2}$

First how do we use lemma?
answer incorrect only if always see bad w's

$$
\begin{aligned}
\Rightarrow \operatorname{Pr}[\text { incorrect }] & \leq\left\|p_{0}(P N)^{k}\right\|_{1} \\
& \leq \sqrt{2^{r}}\left\|p_{0}(P N)^{k}\right\|_{2}
\end{aligned}
$$

since $\|p\|_{1} \leq \sqrt{\text { domain size }} \cdot\|p\|_{2}$

$$
\begin{aligned}
& \leq \sqrt{2^{r}} \|_{\underbrace{}_{0} \|_{2}\left(\frac{1}{5}\right)^{k} \text { apply lemma }}^{k \text { times }} \\
& =\underbrace{\frac{1}{\sqrt{2^{r}}}{ }^{\text {since start at uniform }} \begin{array}{l}
+L_{2} \text { norm of uniform }
\end{array}} \begin{array}{r}
=\sqrt{\sum\left(\frac{1}{2 \eta^{2}}\right.}=\sqrt{\frac{1}{2^{r}}}
\end{array} \\
& =\left(\frac{1}{5}\right)^{k}
\end{aligned}
$$

Proof of lemma:
let $V_{1} . . V_{2^{r}}$ be e-vecs of P
$+V_{1}$ is st. $\left\|V_{1}\right\|_{2}=1 \quad$ (so $V_{1}=\left(\frac{1}{\sqrt{2^{r}}}, \ldots, \frac{1}{\sqrt{2^{r}}}\right)$)
then $\pi=\sum_{i=1}^{r} \alpha_{i} v_{i}$
note: 1) $\|\pi\|_{2}=\sqrt{\alpha_{i}^{2}} \quad$ by (*) proved previously
2) $\forall w \quad\|w N\|_{2}=\sqrt{\sum_{i \in B} w_{i}^{2}} \leq \sqrt{\sum_{i} w_{i}^{2}}=\|w\|_{2}$

So:

$$
\begin{aligned}
\|\pi P N\|_{2} & =\| \sum_{i=1}^{2^{n} \alpha_{i} v_{i} P N \|_{2} \quad \begin{array}{c}
\text { since any } \pi_{i} \\
\text { is lin comb of } \\
\text { basis vectors }
\end{array}} \\
& =\underbrace{\left\|\sum_{i=1}^{2^{n}} \alpha_{i} \lambda_{i} v_{i} N\right\|_{2}}_{(\mathbb{A})} \begin{array}{l}
\left\|\alpha_{1} \lambda_{1} v_{1} N\right\|_{2}
\end{array}+\underbrace{\left\|\sum_{i=2} \alpha_{i} \lambda_{i} v_{i} N\right\|_{2} \quad \text { Cauchy- }}_{(B)} \text { Stwarz }
\end{aligned}
$$

bound (A):

$$
\begin{aligned}
& \left\|\alpha_{1} \lambda_{1} v_{1} N\right\|_{2}=\left\|\alpha_{1} v_{1} N\right\|_{2} \quad \text { since } \lambda_{1}=1 \\
& =\left|\alpha_{1}\right| \cdot \sqrt{\sum_{i \in B}\left(\frac{1}{\sqrt{2}}\right)^{2} \quad \text { since } v_{1}=\left(\frac{1}{\sqrt{2}^{r}}, \ldots, \frac{1}{\sqrt{2^{r}}}\right)} \\
& +N=\left(\begin{array}{cc}
\infty_{0} & \\
0_{11} & 0 \\
0 & 0_{0_{1}}, o_{0}
\end{array}\right)
\end{aligned}
$$

uses that uniform dist is unlikely to be on

$$
=\left|\alpha_{1}\right| \cdot \sqrt{\frac{|B|}{2^{r}}}
$$

$$
\begin{array}{rlr}
\text { a bad string } & \leq \frac{\left|\alpha_{1}\right|}{10} & \text { since } \frac{|B|}{2^{r}} \leq \frac{1}{100} \\
& \leq \frac{\|t\|_{2}}{10} & \text { since }\|\pi\|_{2}=\sqrt{\sum \alpha_{i=1}^{2}}
\end{array}
$$

bound (B):

$$
\left\|\sum_{i=2}^{2^{r}} \alpha_{i} \lambda_{i} v_{i} N\right\|_{2} \leq\left\|\sum_{i=2}^{2^{r}} \alpha_{i} \lambda_{i} v_{i}\right\|_{2} \quad \text { from note }
$$

uses
"mixing"
of v_{s}^{\prime}
for $i>2$.

$$
=\sqrt{\sum\left(\alpha_{i} \lambda_{i}\right)^{2}}
$$

These could be
"heavy" in bad areas, but wont
stay, for long!!
So: $\|T P N\|_{2} \leq \frac{\|T\|_{2}}{5}$

