Lecture 13

- finish Saving random bits via random walks
- Linearity testing intro

From last time:
Linear Algebra Review
def v is an eigenvector of A with corresponding eigenvalue λ iff

$$
v A=\lambda v
$$

def \mathcal{q}_{2}-norm of $v=\left(v_{1} \cdots v_{n}\right)=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}=v \cdot v$
def $v^{(\prime \prime} \ldots v^{(m)}$ orthonormal if

$$
\begin{aligned}
& \underbrace{v^{(i)} \cdot v^{(j)}}_{\text {imper product }}= \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases} \\
& =\sum_{l} v_{l}^{[i)} \cdot v_{l}^{(j)}
\end{aligned}
$$

The Transition matrix P real + symmetric

$$
\Rightarrow \exists \text { e-vecs } \quad v^{(1)} \cdots v^{(n)}
$$

forming orthonormal basis with corresponding

$$
\text { e. values } \begin{aligned}
& \quad\left|=\lambda_{1} \geq\left|\lambda_{2}\right| \geq \ldots \geq \lambda_{n}\right| \\
&+\quad v^{11}=\frac{1}{\sqrt{n}}(1 \ldots 1)
\end{aligned}
$$

chosen so that $\left\|r^{(1)}\right\|_{2}=1$
\Rightarrow any vector ω is expressible as linear Combination of $v^{(1)}$'s

$$
w=\sum \alpha_{i} v^{(i)}
$$

$+L_{2}^{\text {norm }}$ of w is $\sqrt{\sum \alpha_{i}^{2}} *$

From last time:
Useful Facts:
Assume P has all positive entries + execs $v^{(1)} \ldots v^{(n)}$ with
Facts corresponding e-vials $\lambda_{1} \cdots \lambda_{n}$
(1) αP has e-vees $v^{(1)} \cdots v^{(n)}$ with correspmading evils $\alpha \lambda_{1 i}, \alpha \lambda_{n}$
(2) $P+I$ $\lambda_{1}+\ldots, \lambda_{n}+1$
(3) P^{k} $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k} \longleftarrow \begin{gathered}\text { useful } \\ \text { today }\end{gathered}$
(4) P stochastic $\Rightarrow\left|\lambda_{i}\right| \leqslant 1 \quad \forall i$

Nob: add self -loops: $\frac{P+I}{2}="$ Stay pot with port $1 / 2 \alpha$

$$
\Rightarrow \begin{aligned}
& \Rightarrow \text { new eigen values walk with prob } y_{2} \text { " } \\
& \frac{\lambda_{1}+1}{2}, \ldots, \frac{\lambda_{n}+1}{2}
\end{aligned}
$$

The P is transition matrix of undirected, $\underset{\text { cont }}{\text { con }} \rightarrow$ nonk-partite, dreg connected graph
Π_{0} is start dist.
π is statorory dist $=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$

$$
\text { (so } \pi p=\pi \text {) }
$$

Then $\left\|\pi_{0} p^{t}-\pi\right\|_{2} \leq \| \lambda_{2} t^{t}$

Reducing Randomness via
Random Walks:

For language L,
let of be algorithm sit.
(1) $\forall x \in L \quad \underset{d^{\prime} \text { coins }}{\operatorname{Pr}}[A(x)=1] \geq 99 / 100 \quad$ usually correct
(2) $\left.\forall x \notin L \quad \operatorname{Pr}_{\substack{\left.d_{s}\right\} \\ d \text { sins }}} A(x)=0\right]=1 \quad$ alway correct

To get error $<2^{-k}$

Method

1) run K times + output " $X \& L$ " if see 0 else output " $X \in L$ "
2) Use pairwise ind random bits
3) today: use random walks to choose bits
\# random bits used $k \cdot r$

$$
O(k+r)
$$

$$
r+O(k)
$$

The graph G: \longleftarrow we get to pick G!!!

- constant degree d-regular, connected, nonbipastite
- transition matrix P for r.w. on G has $\left|\lambda_{2}\right| \leq \frac{1}{10}$
d-reg \Rightarrow stat dist Π is uniform
- \# nodes $=2^{r} \quad$ corresponds to all possible choices of r random bits

The Algorithm
\# random bits

- Pick random start node $\omega \in\{0,1\}^{r}$
- Repeat K times:
$\omega \leftarrow$ random nor of ω

If $A(x)$ outputs " $x \in L$ ", output " $x \in L$ " that else continue

- Output "X£L"

$$
\text { total: } r+O(k)
$$

Behavior: Claim: error of new algorithm is $\leq\left(\frac{1}{5}\right)^{k}$ for $x \in L$ (shill 0 error for $X \notin L$)

bud case: walk only on "bad strings" \& never reach good strings why is this possible if G arbitrary? eng. line $\tau_{\lambda_{2} \text { is close to } 1}$

Proof of Claim
$X \in L$: algorithm never errs (no bad strings) $x \in L$:
most random bits say $x \in L: \geq \frac{99}{100} \cdot 2^{n}$
define $B \equiv\{\omega \mid A(x)$ with random bits $w\}$ is incorrect.
i.. says $X \notin L$
"bad w's"

$$
|B| \leq \frac{2^{r}}{100}
$$

need lin. alg. way of describing walks that stay in bad set:
define N diagonal matrix

$$
N_{W}=\left\{\begin{array}{lll}
1 & \text { if } w \in B \longleftarrow \text { incorrect } \\
0 & 0 . W_{1} & \longleftarrow \text { correct }
\end{array}\right.
$$

For 9 any probability dist:
q. N is??
example:

$$
\left.\begin{array}{l}
q=(\begin{array}{ll}
\frac{1}{4} & \frac{3}{4}
\end{array} \underbrace{\left(\frac{1}{4}\right.} 0
\end{array}\right) \quad N=\left(\begin{array}{cc}
1 & 0 \\
0
\end{array}\right)
$$

9.N deletes weight that finds
a witness to $X \in L$

$$
\|q \cdot N\|_{1}=\operatorname{Pr}_{w \in q}[w \text { is bad }]
$$

Can compose:
$\|q \cdot P N\|_{1}=\operatorname{Pr}_{w \in q}[$ start at q, take a step \& land on "bud"]
\| $\left\|(P N)^{i}\right\|_{\mathcal{L}}=\operatorname{Pr}_{w \in q}[$ startat q, take i steps a each is "bad"] bad. this just hurtsus, so ok to ignore.
$\underline{L e m m a} \forall \pi \quad\|\Pi P N\|_{2} \leq \frac{1}{5}\|\pi\|_{2}$

First how do we use lemma?
answer incorrect only if always see bad w's

$$
\begin{aligned}
\Rightarrow \operatorname{Pr}[\text { incorrect }] & \leq\left\|p_{0}(P N)^{k}\right\|_{1} \\
& \leq \sqrt{2^{r}}\left\|p_{0}(P N)^{k}\right\|_{2}
\end{aligned}
$$

since $\|p\|_{1} \leq \sqrt{\text { domain size }} \cdot\|p\|_{2}$

$$
\begin{aligned}
& \leq \sqrt{2^{r}} \|_{\underbrace{}_{0} \|_{2}\left(\frac{1}{5}\right)^{k} \text { apply lemma }}^{k \text { times }} \\
& =\underbrace{\frac{1}{\sqrt{2^{r}}}{ }^{\text {since start at uniform }} \begin{array}{l}
+L_{2} \text { norm of uniform }
\end{array}} \begin{array}{r}
=\sqrt{\sum\left(\frac{1}{2 \eta^{2}}\right.}=\sqrt{\frac{1}{2^{r}}}
\end{array} \\
& =\left(\frac{1}{5}\right)^{k}
\end{aligned}
$$

Proof of lemma:
let $V_{1} . . V_{2^{r}}$ be e-vecs of P
$+V_{1}$ is st. $\left\|V_{1}\right\|_{2}=1 \quad$ (so $V_{1}=\left(\frac{1}{\sqrt{2^{r}}}, \ldots, \frac{1}{\sqrt{2^{r}}}\right)$)
then $\pi=\sum_{i=1}^{r} \alpha_{i} v_{i}$
note: 1) $\|\pi\|_{2}=\sqrt{\alpha_{i}^{2}} \quad$ by (*) proved previously
2) $\forall w \quad\|w N\|_{2}=\sqrt{\sum_{i \in B} w_{i}^{2}} \leq \sqrt{\sum_{i} w_{i}^{2}}=\|w\|_{2}$

So:

$$
\begin{aligned}
\|\pi P N\|_{2} & =\| \sum_{i=1}^{2^{n} \alpha_{i} v_{i} P N \|_{2} \quad \begin{array}{c}
\text { since any } \pi_{i} \\
\text { is lin comb of } \\
\text { basis vectors }
\end{array}} \\
& =\underbrace{\left\|\sum_{i=1}^{2^{n}} \alpha_{i} \lambda_{i} v_{i} N\right\|_{2}}_{(\mathbb{A})} \begin{array}{l}
\left\|\alpha_{1} \lambda_{1} v_{1} N\right\|_{2}
\end{array}+\underbrace{\left\|\sum_{i=2} \alpha_{i} \lambda_{i} v_{i} N\right\|_{2} \quad \text { Cauchy- }}_{(B)} \text { Stwarz }
\end{aligned}
$$

bound (A):

$$
\begin{aligned}
& \left\|\alpha_{1} \lambda_{1} v_{1} N\right\|_{2}=\left\|\alpha_{1} v_{1} N\right\|_{2} \quad \text { since } \lambda_{1}=1 \\
& =\left|\alpha_{1}\right| \cdot \sqrt{\sum_{i \in B}\left(\frac{1}{\sqrt{2}}\right)^{2} \quad \text { since } v_{1}=\left(\frac{1}{\sqrt{2}^{r}}, \ldots, \frac{1}{\sqrt{2^{r}}}\right)} \\
& +N=\left(\begin{array}{cc}
\infty_{0} & \\
0_{11} & 0 \\
0 & 0_{0_{1}}, o_{0}
\end{array}\right)
\end{aligned}
$$

uses that uniform dist is unlikely to be on

$$
=\left|\alpha_{1}\right| \cdot \sqrt{\frac{|B|}{2^{r}}}
$$

$$
\begin{array}{rlr}
\text { a bad string } & \leq \frac{\left|\alpha_{1}\right|}{10} & \text { since } \frac{|B|}{2^{r}} \leq \frac{1}{100} \\
& \leq \frac{\|t\|_{2}}{10} & \text { since }\|\pi\|_{2}=\sqrt{\sum \alpha_{i=1}^{2}}
\end{array}
$$

bound (B):

$$
\left\|\sum_{i=2}^{2^{r}} \alpha_{i} \lambda_{i} v_{i} N\right\|_{2} \leq\left\|\sum_{i=2}^{2^{r}} \alpha_{i} \lambda_{i} v_{i}\right\|_{2} \quad \text { from note }
$$

uses
"mixing"
of $v_{s}^{\prime s}$
for $i>2$.
(v_{i} could have
lots of weight in

$$
=\sqrt{\sum\left(\alpha_{i} \lambda_{i}\right)^{2}}
$$

bad aras, but
"expansion" of graph
cavies it to step or of bad area)
So: $\|T P N\|_{2} \leq \frac{\|\pi\|_{2}}{5}$

New topic)
Linearity Testing

$$
f: G \rightarrow \frac{\partial f}{H}
$$

G is finite group

$$
H^{\prime \prime}
$$

def. f is "linear" if
Chomomorphism)

$$
\begin{array}{lc}
\forall x, y \in G \quad f(x)+f(y)=f\left(x t_{G} y\right) \\
& \uparrow_{H} \text { is "plows } \\
f(x)=x & \text { in group H }
\end{array}
$$

$$
f(x)=a x \bmod p \text { for } G=Z_{p}
$$

$$
f_{\bar{a}}(x)=\sum a_{i} x_{i} \bmod 2
$$

def f is " ε-linear" if \exists linear g s.t. $f+g$ agree on $\geq 1-\varepsilon$ fraction of inputs.

Notation note that the following are equivalent Statements:

- $f+g$ agree on $\geq 1-\varepsilon$ fraction of inputs
- $\frac{|\{x \mid f(x)=g(x), x \in G\}|}{|G|} \geq 1-\varepsilon$
- $\operatorname{Pr}_{x \in G}[f(x)=g(x)] \geq 1-\varepsilon$

How hard is it to test linearity?
do we need to try all $x, y, x+y$ tuples?
if domain is size n, this requires n^{2} tests

$$
\text { of } f(x)+f(y)=f(x+y)
$$

Proposed test: Pick random x, y

$$
\text { Test } \quad f(x)+f(y)=f(x+y)
$$

