Lecture 14
Lecturer: Ronitt Rubinfeld
Scribe: Isabelle Quaye

1 Introduction

In this lecture, we discuss linearity testing, self-correction and introduce the Boolean cube.

2 Problem setup and definition

We begin by defining terms associated with linearity testing:

Definition 1 (Linear function) Given a function f that maps from a finite set G to another finite set H, we say f is linear if $\forall x, y f(x)+_{H} f(y)=f\left(x+_{G} y\right)$.

Here, we define $+_{H}$ to be addition as defined within the set H and $+_{G}$ to be addition as defined within the set G. Examples of such linear functions is the family of functions parameterised by a $f_{a}(x)=a x \bmod m, \forall x \in Z_{m}{ }^{\dagger}$. In this example $G=H$. This is linear because $f_{a}\left(x_{1}\right)+f_{a}\left(x_{2}\right)=$ $a x_{1}+a x_{2}=a\left(x_{1}+x_{2}\right)=f_{a}\left(x_{1}+x_{2}\right)$

We also define a closely related concept called ϵ-linear:

Definition 2 (ϵ-Linear function) Given a function f that maps from a finite set G to another finite set H, we say f is ϵ-linear if there exists a linear function g such that $\operatorname{Pr}_{x \in G}[f(x)=g(x)] \geq 1-\epsilon$.

Given these established definitions, we want to understand how we could test if a function is linear. Since both G and H are finite, we could simply run the check on all possible combinations of x and y. However, G and H could turn out to be very large. We seek a more tractable way to do this.

3 Testing for linearity

As seen in previous lectures, one way to deal with intractability is to introduce randomness. To this end, we present the following randomized algorithm:

```
Do k times:
    Pick random x, y in G
    Test f(x+y)=f(x)+f(y)
```

Figure 1: Call this algorithm A_{1}
An important question here, is what should k be? That is, how many times should we run this algorithm so that we can effectively test if f is linear? This is important because it is possible that for some specific k we choose, the function f could pass the linearity test at all those points but could be far from linear. In that case, we want to be able to express how useful A_{1} is. To answer these questions, we make some useful observations and discuss the concept of self-correction.

[^0]
3.1 Useful Observations

Suppose we choose some a, y and we want to know $P r_{x \in_{u} G}[y=a+x]$. That is, we want to know the probability that for some a and $y, y=a+x$ for any x chosen uniformly at random from G. But with some rearranging, we realise that we can rewrite this probability as follows:

$$
\operatorname{Pr}_{x \in_{u} G}[y=a+x]=\operatorname{Pr}_{x \in_{u} G}[x=y-a]
$$

But since x chosen uniformly at random from G, the probability x equals any value is simply $\frac{1}{|G|}$. Therefore, it follows that if x is picked uniformly at random from G, then $y=a+x$ is also uniformly distributed in G.
This is an important observation and comes up in many places. Consider another example where $G=Z_{2}^{n \dagger}$ and addition under this set is bitwise i.e. $\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n-1}+b_{n-1}, a_{n}+b_{n}\right)$. Then if we have $a=(0,1,1,0)$ and $x=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$, under the assumption that x was picked uniformly at random from G, then the result $\left(0+b_{1}, 1+b_{2}, 1+b_{3}, 0+b_{4}\right)$ is also uniformly distributed.

3.2 Self correction aka "random self-reducibility"

Suppose you are given a function $f: G \rightarrow G^{*}$ such that there exists a linear function $g: G \rightarrow G$ and $\operatorname{Pr}_{x \in G}[f(x)=g(x)] \geq \frac{7}{8}$. Some important notes on this statement:

- This definition is closely related to the definition of ϵ-linear. $\left(\epsilon=\frac{1}{8}\right.$ here)
- We do not know what f looks like; it is handed to us as a blackbox whose functional form is unknown. However, by making calls to f, we can approximate what g is.
- There are likely to be multiple such g but we focusing on show that we can approximate one such g with only $O\left(\log \frac{1}{\beta}\right)$ calls to f but with probability of error at most β.

The idea that we can approximate a linear function g from another function f that may or may not be linear gives rise to the idea of a self-corrector. The idea behind a self-corrector is that we would ideally like to compute $g(x)$ but we do not know what it is and do not have blackbox access to it either. However, there exists a function $f(x)$ which usually agrees with $g(x)$ (at least $\frac{7}{8}$ of the time). We can therefore use calls to $f(x)$ to estimate $g(x)$. The algorithm is as follows:

```
For i=1 to c*log(1/\beta):
    Pick y uniformly at random from G
    Record answer = f(y) + f(x-y) for this round
Output the most common answer from all rounds.
```

Figure 2: $A_{2}(x)$: Algorithm runs on the same input x for each of the $c \log \frac{1}{\beta}$ rounds
We make our first claim for the algorithm:
Claim 1 : $\operatorname{Pr}\left[A_{2}(x)=g(x)\right] \geq 1-\beta$.
Proof: Recall that

$$
\operatorname{Pr}[f(y) \neq g(y)] \leq \frac{1}{8}
$$

[^1]$$
\operatorname{Pr}[f(x-y) \neq g(x-y)] \leq \frac{1}{8}
$$
from our definition above. Using union bound on these two probabilities, we can write that :
$$
\operatorname{Pr}[f(y)=g(y) \& f(x-y)=g(x-y)] \geq 1-\left(\frac{1}{8}+\frac{1}{8}\right)=\frac{3}{4}
$$

Since $\operatorname{Pr}[f(y)+f(x-y)=g(y)+g(x-y)] \geq \operatorname{Pr}[f(y)=g(y) \& f(x-y)=g(x-y)] \geq \frac{3}{4}{ }^{\dagger}$, we can write that:

$$
\operatorname{Pr}[f(y)+f(x-y)=g(y)+g(x-y)] \geq \frac{3}{4}
$$

But notice that $f(y)+f(x-y)$ is the recorded answer for a single round in A_{2} and $g(x)=g(y)+g(x-y)$. Therefore, this tell us the probability that the answer we get on any round is indeed $g(x)$. To analyze this over all the rounds, we use Chernoff bounds where the X_{i} s are indicator variables for round i and is 1 iff in that round the recorded answer is indeed equal to $g(x)$ and 0 otherwise

$$
\operatorname{Pr}[\text { failure }]=\operatorname{Pr}\left[X<\frac{1}{2} * \mu\right]<e^{-\frac{3 k}{32}}, \quad \mu=\frac{3 k}{4}
$$

Since we want an error of at most β, it follows that:

$$
\beta=e^{-\frac{3 k}{32}}
$$

Rearranging yields:

$$
k=\frac{32}{3} \ln \left(\frac{1}{\beta}\right)
$$

so we indeed require $O\left(\log \left(\frac{1}{\beta}\right)\right.$ rounds to achieve an error of at most β.

3.3 Linearity Testing is non-trivial

The motivation for discussing self-correction and linearity testing is that if a given function is ϵ-linear and we can test for it, we can hopefully correct for it as we did in the previous subsection because we know the Pr [failure] However, developing tests for linearity is notoriously difficult. To see this, consider the same linearity testing scheme in Figure 1 and suppose we have a function $f: Z_{m} \rightarrow Z_{m}$. We have that f is defined as follows:

$$
f(x)= \begin{cases}1 & x \equiv 1 \bmod 3 \\ 0 & x \equiv 0 \bmod 3 \\ -1 & x \equiv 2 \bmod 3\end{cases}
$$

A graph of the function is found in Figure 3. From the graph, we see that the best linear function $g(x)=0$ that best approximates $f(x)$ will only align with at most $\frac{1}{3}$ of the points in $f(x)$. Therefore, we say that $g(x)$ is $\frac{2}{3}$-far from linear.
Notice that when $g(x)=0$, our algorithm A_{1} only fails ${ }^{\ddagger}$ anytime $x \equiv y \equiv 1 \bmod 3$ and whenever $x \equiv y \equiv 2 \bmod 3$ but it passes for all other x, y. Therefore with our algorithm, the function f succeeds on a large number of x, y even though it is clearly far from linear. We call this example the Coppersmith's Example and it is an example of the worst-case.

[^2]

Figure 3: "tough" function $f(x)$ from Coppersmith's Example

3.4 Rejection probability

As seen in the previous subsection, there are cases where our algorithm does not perform well for certain choices of f and x, y. As a result, our algorithm isn't guaranteed to return the correct answer all the time. To this end, we define δ_{f} to be the rejection probability of linearity testing which is the probability that for any $x, y f(x)+f(y) \neq f(x+y)$. In the Coppersmith example, $\delta_{f}=\frac{2}{9}$ for a function f that is $\frac{2}{3}$-far from any $g(x)$. Since the Coppersmith Example is a worst case scenario, $\frac{2}{9}$ is in fact a threshold for defining an important theorem:

Theorem 1: If $\delta_{f}<\frac{2}{9}$, then f must be δ_{f}-close to linear \S
Given this theorem about the rejection probability, we can set k from A_{1} to $\frac{1}{\delta_{f}}$. The reasoning here is that if a function is far from linear, then there is some probability of rejection and so we exploit that probability to find the number of times we need to repeat the algorithm A_{1} until we encounter a failing x, y.

4 Linearity Testing for Boolean functions

In this section, we restrict ourselves to looking at linearity testing for Boolean functions i.e. $f: G \rightarrow$ $\{0,1\}$. to be able to analyze this case, we need a few important definitions and tools like Fourier analysis over Boolean cube. We define these tools and definitions today and will finish up Fourier analysis over Boolean cube next lecture.

[^3]
4.1 Boolean cube

The Boolean cube of size n is best described by example:

Figure 4: Boolean cube for $n=3$.
It consists of $i 0 \mathrm{~s}$ and $n-i 1 \mathrm{~s}$ at each level $i \mathbb{I}$. It is funnel shaped at both ends with 111 at the top and 000 at the bottom. The arrows are drawn between levels to connect bits that differ by a single bit flip from 0 to 1 .

4.2 Inner product and notation change

We define the inner product on two n-bit binary digits x, y as:

$$
x \cdot y=\sum_{i=1}^{n} x_{i} y_{i} \bmod 2
$$

From here, we define a set of linear functions on the domain $\{0,1\}^{n}$:

$$
L_{a}(x)=a x
$$

for a fixed $a \in\{0,1\}^{n}$. Since these functions are parameterized by a and there are 2^{n} choices for a, there are also 2^{n} of these functions. However, using our inner product notation, we can rewrite this as:

$$
L_{a}(x)=L_{A}(x)=\sum_{i \in A} x_{i} \bmod 2
$$

where A are the set of indices i where $a_{i}=1$
The change of notation we propose is for the function f. Before we had $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Now we change f such that $f:\{+1,-1\}^{n} \rightarrow\{+1,-1\}$. Essentially, we are letting $0 \rightarrow+1$ and $1 \rightarrow-1$. This means we have that:

$$
\begin{equation*}
a \rightarrow(-1)^{a} \tag{A}
\end{equation*}
$$

[^4]$$
a+b \rightarrow(-1)^{(a+b)}=(-1)^{a}(-1)^{b} \quad(B)
$$

Essentially by making this change, we are mapping addition to multiplication ${ }^{\|}$. This also changes our linearity condition:

$$
f(a)+f(b)=f(a+b) \rightarrow f(a) f(b)=f(a * b)
$$

As a result, A_{1} changes also. It's condition for passing the test is as follows:

$$
f(x) f(y) f(x * y)= \begin{cases}1 & \text { test accepts } \\ -1 & \text { test rejects }\end{cases}
$$

We can redefine this test for a passed round as follows:

$$
\frac{1-f(x) f(y) f(x * y)}{2}= \begin{cases}0 & \text { test accepts } \\ 1 & \text { otherwise }\end{cases}
$$

We also redefine the rejection probability from $\delta_{f}=P r_{x, y}[f(x)+f(y) \neq f(x+y)]$ to $\delta_{f}=\operatorname{Pr}_{x, y}[f(x) f(y) \neq f(x * y)]$

5 Conclusion

In the next lecture, we look at Fourier analysis on the Boolean cube which will help us get stronger bounds than we achieved with Theorem 1.

[^5]
[^0]: ${ }^{\dagger}$ Recall that $Z_{m}=[0, \ldots, m-1]$

[^1]: ${ }^{\dagger}$ This notation simply means that G consists of vectors of length n whose entries are either 0 or 1 .
 ${ }^{*}$ Could also do this definition in terms of $G \rightarrow H$

[^2]: ${ }^{\dagger}$ One way to see this is to consider probability from a counting perspective. The number of ways that $f(y)+f(x-y)=$ $g(y)+g(x-y)$ includes the case where $f(y)=g(y) f(x-y)=g(x-y)$. As a result, the probability of the former occurring is larger than just the latter.
 ${ }^{\ddagger}$ Here fails means that the test on the third line with f fails

[^3]: ${ }^{\S}$ Or equivalently $\left(1-\delta_{f}\right)$-far from linear.

[^4]: ICount levels from the top downward as you would a recursion tree

[^5]: $\|$ We see this clearly in (B)

