
6.842 Randomness and Computation March 19, 2022

Lecture 14
Lecturer: Ronitt Rubinfeld Scribe: Isabelle Quaye

1 Introduction

In this lecture, we discuss linearity testing, self-correction and introduce the Boolean cube.

2 Problem setup and definition

We begin by defining terms associated with linearity testing:

Definition 1 (Linear function) Given a function f that maps from a finite set G to another finite
set H, we say f is linear if ∀ x, y f(x) +H f(y) = f(x+G y).

Here, we define +H to be addition as defined within the set H and +G to be addition as defined
within the set G. Examples of such linear functions is the family of functions parameterised by a
fa(x) = ax mod m,∀x ∈ Zm

†. In this example G = H. This is linear because fa(x1) + fa(x2) =
ax1 + ax2 = a(x1 + x2) = fa(x1 + x2)

We also define a closely related concept called ϵ-linear:

Definition 2 (ϵ-Linear function) Given a function f that maps from a finite set G to another finite
set H, we say f is ϵ-linear if there exists a linear function g such that Prx∈G[f(x) = g(x)] ≥ 1− ϵ.

Given these established definitions, we want to understand how we could test if a function is linear.
Since both G and H are finite, we could simply run the check on all possible combinations of x and y.
However, G and H could turn out to be very large. We seek a more tractable way to do this.

3 Testing for linearity

As seen in previous lectures, one way to deal with intractability is to introduce randomness. To this
end, we present the following randomized algorithm:

Figure 1: Call this algorithm A1

An important question here, is what should k be? That is, how many times should we run this
algorithm so that we can effectively test if f is linear? This is important because it is possible that for
some specific k we choose, the function f could pass the linearity test at all those points but could be
far from linear. In that case, we want to be able to express how useful A1 is. To answer these questions,
we make some useful observations and discuss the concept of self-correction.

†Recall that Zm = [0, ...,m− 1]

1

3.1 Useful Observations

Suppose we choose some a, y and we want to know Prx∈uG[y = a + x]. That is, we want to know the
probability that for some a and y, y = a + x for any x chosen uniformly at random from G. But with
some rearranging, we realise that we can rewrite this probability as follows:

Prx∈uG[y = a+ x] = Prx∈uG[x = y − a]

But since x chosen uniformly at random from G, the probability x equals any value is simply 1
|G| .

Therefore, it follows that if x is picked uniformly at random from G, then y = a + x is also uniformly
distributed in G.
This is an important observation and comes up in many places. Consider another example whereG = Zn

2
†

and addition under this set is bitwise i.e. (a1, ..., an)+(b1, ..., bn) = (a1+b1, a2+b2, ..., an−1+bn−1, an+bn).
Then if we have a = (0, 1, 1, 0) and x = (b1, b2, b3, b4), under the assumption that x was picked uniformly
at random from G, then the result (0 + b1, 1 + b2, 1 + b3, 0 + b4) is also uniformly distributed.

3.2 Self correction aka “random self-reducibility”

Suppose you are given a function f : G → G ∗ such that there exists a linear function g : G → G and
Prx∈G[f(x) = g(x)] ≥ 7

8 . Some important notes on this statement:

• This definition is closely related to the definition of ϵ-linear.(ϵ = 1
8 here)

• We do not know what f looks like; it is handed to us as a blackbox whose functional form is
unknown. However, by making calls to f , we can approximate what g is.

• There are likely to be multiple such g but we focusing on show that we can approximate one such
g with only O(log 1

β) calls to f but with probability of error at most β.

The idea that we can approximate a linear function g from another function f that may or may not
be linear gives rise to the idea of a self-corrector. The idea behind a self-corrector is that we would
ideally like to compute g(x) but we do not know what it is and do not have blackbox access to it either.
However, there exists a function f(x) which usually agrees with g(x) (at least 7

8 of the time). We can
therefore use calls to f(x) to estimate g(x). The algorithm is as follows:

Figure 2: A2(x): Algorithm runs on the same input x for each of the c log 1
β rounds

We make our first claim for the algorithm:
Claim 1 : Pr[A2(x) = g(x)] ≥ 1− β.
Proof: Recall that

Pr[f(y) ̸= g(y)] ≤ 1

8

†This notation simply means that G consists of vectors of length n whose entries are either 0 or 1.
∗Could also do this definition in terms of G → H

2

Pr[f(x− y) ̸= g(x− y)] ≤ 1

8

from our definition above. Using union bound on these two probabilities, we can write that :

Pr[f(y) = g(y)&f(x− y) = g(x− y)] ≥ 1−
(
1

8
+

1

8

)
=

3

4

.
Since Pr[f(y) + f(x− y) = g(y) + g(x− y)] ≥ Pr[f(y) = g(y)& f(x− y) = g(x− y)] ≥ 3

4
†,

we can write that:

Pr[f(y) + f(x− y) = g(y) + g(x− y)] ≥ 3

4

But notice that f(y)+f(x−y) is the recorded answer for a single round in A2 and g(x) = g(y)+g(x−y).
Therefore, this tell us the probability that the answer we get on any round is indeed g(x). To analyze
this over all the rounds, we use Chernoff bounds where the Xis are indicator variables for round i and
is 1 iff in that round the recorded answer is indeed equal to g(x) and 0 otherwise

Pr[failure] = Pr[X <
1

2
∗ µ] < e−

3k
32 , µ =

3k

4

Since we want an error of at most β, it follows that:

β = e−
3k
32

Rearranging yields:

k =
32

3
ln

(
1

β

)
so we indeed require O(log(1β) rounds to achieve an error of at most β.

3.3 Linearity Testing is non-trivial

The motivation for discussing self-correction and linearity testing is that if a given function is ϵ-linear
and we can test for it, we can hopefully correct for it as we did in the previous subsection because we
know the Pr[failure] However, developing tests for linearity is notoriously difficult. To see this, consider
the same linearity testing scheme in Figure 1 and suppose we have a function f : Zm → Zm. We have
that f is defined as follows:

f(x) =

1 x ≡ 1 mod 3

0 x ≡ 0 mod 3

−1 x ≡ 2 mod 3

A graph of the function is found in Figure 3. From the graph, we see that the best linear function
g(x) = 0 that best approximates f(x) will only align with at most 1

3 of the points in f(x). Therefore,
we say that g(x) is 2

3 -far from linear.
Notice that when g(x) = 0, our algorithm A1 only fails‡ anytime x ≡ y ≡ 1 mod 3 and whenever
x ≡ y ≡ 2 mod 3 but it passes for all other x, y. Therefore with our algorithm, the function f succeeds on
a large number of x, y even though it is clearly far from linear. We call this example the Coppersmith’s
Example and it is an example of the worst-case.

†One way to see this is to consider probability from a counting perspective. The number of ways that f(y)+f(x−y) =
g(y)+ g(x−y) includes the case where f(y) = g(y)f(x−y) = g(x−y). As a result, the probability of the former occurring
is larger than just the latter.

‡Here fails means that the test on the third line with f fails

3

Figure 3: “tough” function f(x) from Coppersmith’s Example

3.4 Rejection probability

As seen in the previous subsection, there are cases where our algorithm does not perform well for certain
choices of f and x, y. As a result, our algorithm isn’t guaranteed to return the correct answer all the
time. To this end, we define δf to be the rejection probability of linearity testing which is the probability
that for any x, y f(x) + f(y) ̸= f(x+ y). In the Coppersmith example, δf = 2

9 for a function f that is
2
3 -far from any g(x). Since the Coppersmith Example is a worst case scenario, 2

9 is in fact a threshold
for defining an important theorem:

Theorem 1: If δf < 2
9 , then f must be δf -close to linear §

Given this theorem about the rejection probability, we can set k from A1 to 1
δf
. The reasoning here is

that if a function is far from linear, then there is some probability of rejection and so we exploit that
probability to find the number of times we need to repeat the algorithm A1 until we encounter a failing
x, y.

4 Linearity Testing for Boolean functions

In this section, we restrict ourselves to looking at linearity testing for Boolean functions i.e. f : G →
{0, 1}. to be able to analyze this case, we need a few important definitions and tools like Fourier analysis
over Boolean cube. We define these tools and definitions today and will finish up Fourier analysis over
Boolean cube next lecture.

§Or equivalently (1− δf)-far from linear.

4

4.1 Boolean cube

The Boolean cube of size n is best described by example:

Figure 4: Boolean cube for n = 3.

It consists of i 0s and n− i 1s at each level i¶. It is funnel shaped at both ends with 111 at the top and
000 at the bottom. The arrows are drawn between levels to connect bits that differ by a single bit flip
from 0 to 1.

4.2 Inner product and notation change

We define the inner product on two n-bit binary digits x, y as:

x · y =

n∑
i=1

xiyi mod 2

From here, we define a set of linear functions on the domain {0, 1}n:

La(x) = ax

for a fixed a ∈ {0, 1}n. Since these functions are parameterized by a and there are 2n choices for a, there
are also 2n of these functions. However, using our inner product notation, we can rewrite this as:

La(x) = LA(x) =
∑
i∈A

xi mod 2

where A are the set of indices i where ai = 1
The change of notation we propose is for the function f . Before we had f : {0, 1}n → {0, 1}. Now

we change f such that f : {+1,−1}n → {+1,−1}. Essentially, we are letting 0 → +1 and 1 → −1. This
means we have that:

a → (−1)a (A)

¶Count levels from the top downward as you would a recursion tree

5

a+ b → (−1)(a+b) = (−1)a(−1)b (B)

Essentially by making this change, we are mapping addition to multiplication‖. This also changes our
linearity condition:

f(a) + f(b) = f(a+ b) → f(a)f(b) = f(a ∗ b)

As a result, A1 changes also. It’s condition for passing the test is as follows:

f(x)f(y)f(x ∗ y) =

{
1 test accepts

−1 test rejects

We can redefine this test for a passed round as follows:

1− f(x)f(y)f(x ∗ y)
2

=

{
0 test accepts

1 otherwise

We also redefine the rejection probability from δf = Prx,y[f(x) + f(y) ̸= f(x+ y)] to
δf = Prx,y[f(x)f(y) ̸= f(x ∗ y)]

5 Conclusion

In the next lecture, we look at Fourier analysis on the Boolean cube which will help us get stronger
bounds than we achieved with Theorem 1.

‖We see this clearly in (B)

6

