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Lecture 15: Basics of Fourier Analysis on the Boolean Cube
Lecturer: Ronitt Rubinfeld Scribe: Hristo Papazov

1 Introduction.

In today’s lecture, we cover

• Basics of Fourier Analysis on the Boolean Cube;

• Analysis of Linearity Testing.

Recall that, strictly speaking, a Boolean function on the n−dimensional Boolean cube is defined as
a mapping f : {0, 1}n → {0, 1}. However, using the group homomorphism

φ : {0, 1,+} → {1,−1,×}
x 7→ (−1)x,

we can alternatively consider the often more convenient multiplicative analog of a Boolean function
f ′ = φ ◦ f ◦ φ−⊗n : {±1}n → {±1}.

2 Fourier Analysis on the Boolean Cube

Without further ado, we jump straight into finding a suitable basis for the space of all Boolean Functions
f : {±1}n → {±1}.

1st Idea: We could consider the indicator functions ea : {±1}n → R for every a ∈ {±1}n such that

ea(x) =

{
1 if x = a;

0 otherwise.

Notice that these indicator functions actually form the standard orthonormal basis of R2n . Clearly, all
Boolean functions g can be expressed as the sum

g(x) =
∑

a∈{±1}n

g(a)ea(x).

All in all, this could be a useful representation of Boolean functions, but since we would like to apply
Fourier Analysis to Linearity Testing, we would like to have a basis of linear functions.

2nd Idea: So, we could instead consider the parity functions {χS}S⊆[n] such that for every x ∈ {±1}n,

χS(x) =
∏
i∈S

xi,

whenever S ̸= ∅ and χ∅ ≡ 1. Clearly, the range of each χS is {±1}, so the parity functions are Boolean
functions. Moreover, they are also linear. Indeed, let S ⊆ [n] and let x, y ∈ {±1}n. Then,

χS(x⊙ y) =
∏
i∈S

xiyi

=
∏
i∈S

xi

∏
i∈S

yi

= χS(x)χS(y).
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Definition 1 For f, g : {±1}n → R, we define their inner product as ⟨f, g⟩def= 1
2n

∑
x∈{±1}n f(x)g(x).

With this definition of inner product on the function space R{±1}n

, we are ready to state our first
fact about the parity functions.

Fact 2 The parity functions χS form an orthonormal basis of R{±1}n

with respect to the aforementioned
inner product.

Proof

• Normality: Notice that ⟨χS , χS⟩ = 1
2n

∑
x∈{±1}n χS(x)

2 = 1, ∀S ⊆ [n].

• Orthogonality: Let S ̸= T be two subsets of [n] and fix x ∈ {±1}n. Then,

χS(x)χT (x) =
∏
i∈S

xi

∏
j∈T

xj =
∏

i∈S∩T

x2
i

∏
j∈S△T

xj =
∏

j∈S△T

xj = χS△T (x).

Now, S△T ̸= ∅, so there exists a number k ∈ S△T . For any bitstring x ∈ {±1}n, we define x⊕k

as x with the kth bit flipped. Now,

⟨χS , χT ⟩ =
1

2n

∏
x∈{±1}n

χS(x)χT (x)

=
1

2n

∏
x∈{±1}n

χS△T (x)

=
1

2n+1

∏
x,x⊕k∈{±1}n

χS△T (x) + χS△T (x
⊕k)

=
1

2n+1

∏
x,x⊕k∈{±1}n

(xk + x⊕k
k )

∏
i/∈S△T\{k}

xi

= 0.

Hence, we proved that the family of parity functions {χS}S⊆[n] is orthonormal with respect to ⟨·⟩. Since
R{±1}n

is of dimension 2n and there are 2n parity functions in total, it follows that {χS}S⊆[n] is an

orthonormal basis of R{±1}n

.

Corollary 3 Every Boolean function f : {±1}n → {±1} is uniquely expressible as a linear combination
of parity functions.

If the Boolean function f has the following representation in the parity basis:

f(x) =
∑
S⊆[n]

αSχS(x),

then ∀S ⊆ [n], αS = ⟨f, χS⟩ by orthonormality.

Definition 4 For every S ⊆ [n], we define the S−Fourier coefficient of f ∈ R{±1}n

to be

f̂(S) = ⟨f, χS⟩ =
1

2n

∑
x∈{±1}n

f(x)χS(x).

Therefore, ∀f ∈ R{±1}n

,

f(x) =
∑
S⊆[n]

f̂(S)χS(x).
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3 Fourier Coefficients of Linear Functions

We begin to build the machinery that will be applied to Linearity Testing.

Fact 5 A Boolean function f : {±1}n → {±1} is linear ⇐⇒ ∃S ⊆ [n] such that f̂(S) = 1 and ∀T ⊆ [n]

such that T ̸= S, f̂(T ) = 0. Equivalently, the parity functions χS are the only linear Boolean functions.

Proof The proof of this fact rests on a simple counting argument. Recall that there is a bijection
between linear “multiplicative” and linear “additive” Boolean functions as discussed in the introduction.
Each “additive” linear function f : {0, 1}n → {0, 1} is uniquely determined by its values at 1i for
i = 1, 2, . . . , n. Thus, there are a total of 2n linear Boolean functions. We already saw that the 2n parity
functions are linear, which proves that all linear functions are parity functions.

The next lemma shows the connection between Fourier coefficients and distance to linearity. Recall
that for two functions f, g ∈ R{±1}n

,

dist(f, g) = P(f ̸= g) =
#x s.t. f(x) ̸= g(x)

2n
.

Lemma 6 For every S ⊆ [n], f : {±1}n → {±1}, f̂(S) = 1− 2dist(f, χS).

Proof Fix S ⊆ [n]. Then,

2nf̂(S) =
∑

x∈{±1}n

f(x)χS(x)

=
∑

x:f(x)=χS(x)

1−
∑

x:f(x)̸=χS(x)

1

=

 ∑
x∈{±1}n

1

− 2

 ∑
x:f(x)̸=χS(x)

1


= 2n − 2n+1dist(f, χS).

The lemma we just proved constitutes one of the reasons we consider the “multiplicative” version of
Boolean functions.

Observation 7 Any two distinct linear functions χS and χT differ on exactly half of the input.

Proof Since the parity functions form an orthonormal basis,

0 = ⟨χS , χT ⟩ = 1− 2dist(χS , χT ).

Hence, dist(χS , χT ) = 1/2.

So, every linear function χS where S ̸= ∅ differs from χ∅ ≡ 1 on exactly half of the input. Hence,
E[χS ] = 0,∀S ̸= ∅.

We continue our discussion with two useful identities.

Theorem 8 (Plancharel’s Indentity) Let f, g ∈ R{±1}n

. Then,

⟨f, g⟩ =
∑
S⊆[n]

f̂(S)ĝ(S).
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Proof The proof is immediate from orthonormality:

⟨f, g⟩ = ⟨
∑
S⊆[n]

f̂(S)χS ,
∑

T⊆[n]

ĝ(T )χT ⟩

=
∑

S,T⊆[n]

f̂(S)ĝ(T )⟨χS , χT ⟩

=
∑
S⊆[n]

f̂(S)ĝ(S).

When we consider the case f = g, we get the following corollary.

Corollary 9 (Parseval’s Indentity) Let f ∈ R{±1}n

. Then,

⟨f, f⟩ =
∑
S⊆[n]

f̂(S)2.

And if we apply Parseval’s Identity to the Boolean function case, we obtain “Boolean Parseval’s”:∑
S⊆[n]

f̂(S)2 = 1.

Indeed, when f ranges over {±1}, ⟨f, f⟩ = 1
2n

∑
x∈{±1}n f(x)2 = 1.

4 Linearity Testing

Throughout this section, we will only work with “multiplicative” Boolean functions.

Definition 10 We will say that the Boolean function f is ε−linear if there exists a linear Boolean
function g such that Px∈{±1}n(f = g) ≥ 1 − ε. Equivalently, f is ε−linear when dist(f, χS) ≤ ε for

some S ⊆ [n], which is in turn equivalent to f̂(S) ≥ 1− 2ε.

We will use the following linearity test for a Boolean function f .

Linearity Test: Pick uniformly at random and independently x, y ∈ {±1}n. Test if f(x)f(y)
?
=

f(x⊙ y).
The rejection probability of this test is defined as

δf
def
=Px,y(f(x)f(y) ̸= f(x⊙ y))

= Ex,y[
1− f(x)f(y)f(x⊙ y)

2
].

We proceed to state and prove the main result of this lecture.

Theorem 11 Every Boolean function f : {±1}n → {±1} is δf−linear.
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Proof The proof strategy is to evaluate the rejection probability δf in terms of the Fourier coefficients
of f , which are tied to the linearity distance as we saw. Without further ado,

Ex,y [f(x)f(y)f(x⊙ y)] = Ex,y

[
(
∑
S

f̂(S)χS(x))(
∑
T

f̂(T )χT (y))(
∑
U

f̂(U)χU (x⊙ y))

]

= Ex,y

 ∑
S,T,U

f̂(S)f̂(T )f̂(U)χS(x)χT (y)χU (x⊙ y)


= Ex,y

 ∑
S,T,U

f̂(S)f̂(T )f̂(U)χS(x)χT (y)χU (x)χU (y)


=

∑
S,T,U

f̂(S)f̂(T )f̂(U)Ex,y[χS(x)χT (y)χU (x)χU (y)]

=
∑
S,T,U

f̂(S)f̂(T )f̂(U)Ex[χS(x)χU (x)]Ex[χS(y)χU (y)]

=
∑
S,T,U

f̂(S)f̂(T )f̂(U)⟨χS(x), χU (x)⟩⟨χS(y), χU (y)⟩

=
∑
S

f̂(S)3,

where we used the linearity of expectation, the independence of x and y, and the orthonormality of the
parity functions. Hence,

Ex,y [f(x)f(y)f(x⊙ y)] ≤
(
max
S

f̂(S)
)∑

S

f̂(S)2 = max
S

f̂(S)

by Boolean Parseval’s. We conclude the proof by noting that

δf =
1− Ex,y [f(x)f(y)f(x⊙ y)]

2

≥ 1−maxS f̂(S)

2

=
1− (1− 2minS dist(f, χS))

2
= min

S
dist(f, χS).

Thus, P(f = χs) ≥ 1− δf for some S ⊆ [n].
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