Lecture 17

Fourier-based learning algorithms

- learning one fourier coeff
- the low degree algorithm

Review from last time:
def uniform distribution learning algorithm for concept class C is algorithm ot st.

- A given $\varepsilon, \delta>0$
access to $E_{x}(f)$ for $f \in C$
- A outputs h st. with prob $\geq 1-\delta$

$$
\underbrace{\text { error }(h) \text { writ. } f \text { is }}_{h \text { is } \varepsilon \text {-close to f }} \leq \varepsilon
$$

Parameters of interest:

- m "samples used by A "Sample complexity"
- E accuracy parameter
- δ confidence parameter
-runtime? hope for poly (log(domainsize), $\left.\frac{1}{\varepsilon}, \frac{1}{\delta}\right)$
- description of h ?
- should it be similar to description of fetus in C? "proper learning"
- at least should be relatively $\underbrace{\text { compact }}_{O(\log |C|)}$ efficient to evaluate

Learning via Fourier Representation
will look at learning algorithms that are based on estimating Fourier representation of fath f (similar to polynomial interpolation)

Approximating one Fourier coefficient:
Lemma for any $S \leq[n]$, can approx no $\hat{f}(s)$ to within additive γ

$$
\text { (ie. } \mid \text { output }-\hat{f}(s) \mid \leq \gamma \text {) }
$$

with prob $\geq 1-\delta$ in $\theta\left(\frac{1}{\gamma^{2}} \log \frac{1}{\delta}\right)$
samples.

$$
\text { Pf. Chernoff }+\hat{f}(s)=2{\underset{\text { estimate this }}{\operatorname{Pr}_{x}}\left[f(x)=x_{s}(x)\right]}-1
$$

Can we find any or all heavy coefficients?
there are exponentially many coeffs, Cam use same samples to estimate each coff, but must union bound prob of error (error = bad approx) on any of them.
Need $\delta \ll \frac{1}{2^{n}}$, which needs $O\left(\frac{1}{\gamma^{2}} \cdot n\right)$ samples, but exponential runtime. $\leftarrow \begin{aligned} & \text { turns out } \\ & \text { that queries }\end{aligned}$ that queries help a lot

What if we "know where to look" for heavy coeffs?
e.g. all heavy coifs are in "low degree" coeffs? If so, can search!

Fourier Representations of Important Examples

1) $\sqrt{A N D}$ on $T \subseteq N$ s.t. $|T|=k$

$$
\overline{A N D}(x)=\left\{\begin{array}{lc}
1 & \text { if } \quad \forall i_{j} \in T=\left\{i_{1} \ldots i_{k}\right\} \\
x_{i_{j}}=-1
\end{array}\right.
$$

$$
\begin{aligned}
f(x) & =\left\{\begin{array}{ll}
1 & \text { if } \quad \forall i \in T \quad x_{i}=-1 \\
0 & 0 . w .
\end{array}\right\} \begin{array}{l}
\text { AND } \\
\text { oren } \\
\text { range }
\end{array} \\
& =\frac{\left(1-x_{i_{1}}\right)}{2} \cdot \frac{\left(1-x_{i_{i}}\right)}{2^{2}}, \cdots \cdot \frac{\left(1-x_{i_{k}}\right)}{2} \\
& =\sum_{S \leq T} \frac{(-1)^{|s|^{k}}}{2^{k}} x_{s} \\
\overline{A W D} & =2 f(x)-1=-1+\frac{2}{2^{|T|}}+\sum_{\substack{s \leq T \\
s \pm \varphi}} \frac{(-1)^{|s|}}{2^{k-1}} x_{s}
\end{aligned}
$$

Not: all Javier coeffs containing vars not in T are 0
2) Decision trees

First consider path functions:

$$
f_{l}(x)=\prod_{i \in V_{l}} \frac{\left(1 \pm x_{i}\right)}{2}
$$

on path to leaf \# let turns taken in S

$$
=\frac{1}{2^{\left|V_{l}\right|}} \sum_{S \leq V_{l}}(\pm 1) X_{s}(-1) \quad \begin{cases}1 & \text { if } x \text { takes } \\ 0 & 0 . \omega .\end{cases}
$$

So $f(x)=\sum_{l \in \text { leaves of } T} f_{l}(x) \cdot \operatorname{val}(\ell)$

Comment only coeffs corresponding to $S \mathrm{st}$. $|s| \leq \max$ path length have a hope of being non-zero.

The low degree algorithm
definition of fetus for which low degree
Fourier coeffs pretty much suffice to describe fats:
def $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ has $\alpha(\varepsilon, n)$-Fourier concentration

$$
\text { if } \sum_{\substack{s \leq[n]}} \hat{f}(s)^{2} \leq \varepsilon \quad \forall 0<\varepsilon<1
$$

st.

$$
|s|>\alpha(\varepsilon, n)
$$

for Boolean f this implies

$$
\sum_{\substack{s \leq[n] \\ \text { st. } \\|s| \leq \alpha(\varepsilon, n)}} \hat{f}(s)^{2} \geq 1-\varepsilon
$$

examples

1) fate f which depends on $\leq k$ vars $\}$ if f doesit depend

$$
\text { has } \sum_{\substack{s \\|s|>|. \\|s|>k}} \hat{f}(s)^{2}=0
$$ on X_{i} then all $\hat{f}(s)$ for which its satisfy $\hat{f}(s)=0$

2) $f=$ AND on $T \leqslant\{1 \ldots n\}$ has $\log \left(\frac{y}{\varepsilon}\right)-F . C$.

- all $\hat{f}(s)^{2}=0$ for $|s|>|T|$
- if $|T| \leq \log \frac{4}{\varepsilon} \quad$ then
- if $|T| \geq \log \frac{4}{\varepsilon} \quad$ then:

$$
\begin{aligned}
\hat{f}(\varphi)^{2} & =\left(1-2 \operatorname{Pr}\left(f(x) \neq x_{p}(x)\right)\right)^{2} \\
& =\left(1-\frac{2}{2^{1 T 1}}\right)^{2} \\
& >1-\varepsilon \\
\text { So } \sum_{s \neq p} \hat{f}(s)^{2} & \leq \varepsilon \quad+\quad f \text { has } 0-F_{1} c_{\text {. }}
\end{aligned}
$$

idea: can we approximate f by only considering low degree Fourier Coff?

Low degree algorithm
approximates fetus with $d \equiv \alpha(\varepsilon, h)$ Fourier concentrations
$\begin{array}{rll}\text { Given: } & d & \text { degree } \\ & \tau & \text { accuracy } \\ & \delta & \text { confidence }\end{array}$

Algorithm:

- Take $m=O\left(\frac{n^{d}}{\tau} \ln \frac{n^{d}}{\delta}\right)$ samples

- For each S st. $|S| \leq d$:

$$
C_{s} \leftarrow \text { estimate of } \hat{f}(S)
$$

- let $h(x) \equiv \sum_{|s| \leq d} C_{s} \cdot X_{s}(x)$
- output sign (h) as hypothesis

Why does this work?
Two stages:

1) Show that f has low F.C.

$$
\Rightarrow E_{x}\left[(f(x)-h(x))^{2}\right] \text { small }
$$

2) Show that $\operatorname{Pr}[f(x) \neq \operatorname{sign}(h(x))] \leq E_{x}\left[(f(x)-h(x))^{2}\right]$.

First "stage":
 together: f has low F.C. $\Rightarrow \operatorname{sigh}(h(x)$ is good approximation off
h satisfies $E_{x}\left[(f(x)-h(x))^{2} \leq \varepsilon+\tau\right.$ with prob $\geq 1-\delta$

Pf (I)each low degree Fourier coeff is well approximated:
Claim with prob $\geq 1-\delta, \forall s$ sit $|s| \leq d$

$$
\left|C_{s}-\hat{f}(s)\right| \leq \gamma \quad \text { for } \quad \gamma \leftarrow \sqrt{\frac{\tau}{n^{d}}}
$$

Pf of claim (Chernoft + union bnd)
note, $\frac{1}{\gamma^{2}}=\frac{n^{d}}{\tau}$
Checrofff bnd \Rightarrow

$$
\begin{aligned}
& O\left(\frac{n^{d}}{\tau} \ln \frac{n^{d}}{\delta}\right)=\sigma\left(\frac{1}{r^{2}} \ln \frac{n^{d}}{\delta}\right) \text { samples } \\
& \text { yields } \operatorname{Pr}\left[\left|C_{s}-\hat{f}(s)\right|>r\right]<\frac{\delta}{n^{d}}
\end{aligned}
$$

union bnd over all $\binom{n}{d} S_{s}^{\prime} \Rightarrow$

$$
\operatorname{Pr}\left[\exists s \text { st }\left|c_{s}-\hat{f}(s)\right|>\delta\right]<\delta
$$

(2) all low degnee Foorier coeffs well approx \Rightarrow low l_{2} error:

Assume $\forall s$ s.t. $|s| \leq d, \quad\left|C_{s}-\hat{f}(s)\right| \leq \gamma$:
define $\quad g(x) \equiv f(x)-h(x)$
Farier trunsform linear $\Rightarrow \forall s \quad \hat{g}(s)=\hat{f}(s)-\hat{h}(s)$
by defn, $\forall s$ s.t. $|s|>d, \hat{h}(s)=0 \Rightarrow \hat{g}(s)=\hat{f}(s)$

$$
\begin{aligned}
|s| \leqslant d, & \hat{h}(s)=C_{s} \\
\Rightarrow & \hat{g}(s)=\hat{f}(s)-C_{s} \\
\text { so } \hat{g}(s)^{2} & \leqslant \gamma^{2}
\end{aligned}
$$

So

$$
\begin{aligned}
& E\left[(f(x)-h(x))^{2}\right]=E\left[g(x)^{2}\right] \\
&=\sum_{s} \hat{g}(s)^{2} \quad \text { Parseva| } \\
&=\sum_{|s| \leq d} \underbrace{\hat{g}(s)^{2}}_{\leqslant \gamma^{2}}+\underbrace{\sum_{|s|>d}}_{\leqslant \varepsilon} \hat{g}(s)^{2} \\
& \leq \tau+b^{2} \text { b.C. } \\
& \leq \tau+\varepsilon
\end{aligned}
$$

$2{ }^{\text {nd }}$ "stage".
Thm $2 f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$

$$
h:\{ \pm 1\}^{n} \rightarrow \mathbb{R}
$$

then $\operatorname{Pr}[f(x) \neq \operatorname{sign}(h(x))] \leq E_{x \in U}^{E}\left[(f(x)-h(x))^{2}\right]$

