
6.842 Randomness and Computation April 6, 2022

Lecture 18
Lecturer: Ronitt Rubinfeld Scribe: Sophia Kwon

Today, we continue on the topic of Fourier-based learning algorithms. We will finish our analysis of
the low degree algorithm from last time, and we’ll continue on to cover Fourier concentration and noise
sensitivity:

1. Low degree algorithm

2. Fourier concentration

3. Noise sensitivity

1 Low Degree Algorithm

1.1 Review of Fourier Transform

In previous lectures, we described a way to construct a basis to describe all possible functions f which
take an n-bit input and produce a one-bit answer. (Recall the convention of using bits {+1,−1} instead
of {0, 1}.) We used parity functions: for S ⊆ {1, ..., n} and x ∈ {±1}n, we define the parity function

χS(x) =
∏
i∈S

xi

In addition, we define the normalized inner product

⟨f, g⟩ = 1

2n

∑
x∈{±1}n

f(x)g(x)

We proved that the set of parity functions {χS} is an orthonormal basis with respect to the normalized
inner product.

Because the set of parity functions {χS} is an orthonormal basis, any function f is uniquely expressible

as a linear combination of χS . We defined the Fourier coefficients of f as {f̂(S)} where

f̂(S) ≡ ⟨f, χS⟩

=
1

2n

∑
x∈{±1}n

f(x)χS(x)

And we proved that for all f , f(x) can be expressed as a linear combination of the parity functions, with
the Fourier coefficients being the coefficients of the linear combination:

∀f, f(x) =
∑
S

f̂(S)χS(x)

Fourier coefficients also characterize the distance to linearity of a function. We showed that

f̂(S) = 1− 2 · Prx∈{±1}n [f(x) ̸= χS(x)]

We also covered the useful equality Plancherel’s identity:

⟨f, g⟩ =
∑
S

f̂(S)ĝ(S)

1

1.2 Learning via Fourier Representation

With that in mind, we turned our attention to learning algorithms based on estimating the Fourier
representation of a function f . Last time we showed that we can approximate one Fourier coefficient.

Lemma 1 For any S ⊆ [n], you can approximate f̂(S) to within γ additive error (that is, |output −
f̂(S)| ≤ γ) with probability ≥ 1− δ in O(1

γ2 log
1
δ) samples.

1.3 Low Degree Fourier Coefficients

What functions can we describe “pretty well” using low degree Fourier coefficients (corresponding to
small |S|)? To answer that, we introduce the idea of Fourier concentration.

Definition 1 A function f : {±1}n → R has α(ϵ, n)-Fourier concentration if ∀0 < ϵ < 1,∑
S⊆[n]:|S|>α(ϵ,n)

f̂(S)2 ≤ ϵ

For boolean functions f , this implies ∑
S⊆[n]:|S|≤α(ϵ,n)

f̂(S)2 ≥ 1− ϵ

1.4 The Low Degree Algorithm

The low degree algorithm approximates functions with d ≡ α(ϵ, n)-Fourier concentration. For a given
degree d, accuracy τ , and confidence δ, the algorithm runs as follows:

• Take m = O(n
d

τ ln nd

δ) samples

• For each S such that |S| ≤ d:

– Let CS be your estimate of f̂(S)

• Let h(X) ≡
∑

|S|≤d CS · χS(x)

• Output sign(h) as hypothesis

Why does this work? We prove correctness in two stages:

1. We will show that if f has as low Fourier concentration, then the expected value of the normalized
L2-distance Ex[(f(x)− h(x))2] is small.

2. We will show that Pr[f(x) ̸= sign(h(x))] ≤ Ex[(f(x)− h(x))2]

When we put these two results together, we will be able to conclude that if f as a low Fourier concentra-
tion, then f and sign(h) disagree on only a few values of x, so sign(h(x)) is a good approximation of f(x).

In the previous lecture, we addressed the first stage by proving the following theorem:

Theorem 1 If f has d ≡ α(ϵ, n)-Fourier concentration, then h satisfies Ex[(f(x)−h(x))2] ≤ ϵ+ τ with
probability ≥ 1− δ.

Now, we will take care of the second stage with the following theorem:

Theorem 2 For f : {±1}n → {±1} and h : {±1}n → R,

Prx[f(x) ̸= sign(h(x))] ≤ Ex[(f(x)− h(x))2]

2

Here’s the proof: By the definition of probability over values of x, we can say that the left hand side
of the inequality in the theorem is

Prx[f(x) ̸= sign(h(x))] =
1

2n

∑
x

1f(x)̸=sign(h(x))

From the definition of expected value, we can say that the right hand side of the inequality in the
theorem is

Ex[(f(x)− h(x))2] =
1

2n

∑
x

(f(x)− h(x))2

Since both sides are 1
2n times a sum of values over all x, we can compare corresponding terms for

each x. If every left hand side term is less than or equal to its corresponding right hand side term, that
is, 1f(x) ̸=sign(h(x)) ≤ (f(x)− h(x))2 for all x, then the inequality is true.

Each value of x falls into one of two cases:

Case 1 f(x) = sign(h(x)): In this case, the left hand side term 1f(x) ̸=sign(h(x)) = 0. The right hand
side term (f(x) − h(x))2 ≥ 0 because the square of a real number is always non-negative. Therefore,
1f(x)̸=sign(h(x)) ≤ (f(x)− h(x))2, so we’re good.

Case 2 f(x) ̸= sign(h(x)): In this case, 1f(x)̸=sign(h(x)) = 1. As for the right hand side, we know that
f(x) and h(x) have different signs. Recall that f(x) is either +1 or −1. If f(x) = +1, then h(x) < 0, so
f(x) − h(x) > 1, which means (f(x) − h(x))2 ≥ 1. If f(x) = −1, then h(x) > 0, so f(x) − h(x) < −1,
which means that, again, (f(x)− h(x))2 ≥ 1. Thus, 1f(x)̸=sign(h(x)) ≤ (f(x)− h(x))2.

Thus, for all x, 1f(x)̸=sign(h(x)) ≤ (f(x)− h(x))2. So,

1

2n

∑
x

1f(x)̸=sign(h(x)) ≤
1

2n

∑
x

(f(x)− h(x))2

Prx[f(x) ̸= sign(h(x))] ≤ Ex[(f(x)− h(x))2]

1.5 Correctness of Learning Algorithm

We summarize our results so far in a theorem about the learnability of a concept class C with a certain
Fourier concentration.

Theorem 3 If concept class C has Fourier concentration d = α(ϵ, n), then there is a q = O(n
d

ϵ log nd

δ)
sample uniform distribution learning algorithm for C. In other words, there exists an algorithm which
takes q samples and with probability ≥ 1− δ outputs h′ such that Prx[f(x) ̸= h′(x)] ≤ 2ϵ.

Here’s the proof: We can run the Low Degree Algorithm with τ = ϵ. By Theorem 1, the Low Degree
Algorithm obtains an h such that the expected L2 difference between f and h is

Ex[(f(x)− h(x))2] ≤ ϵ+ ϵ = 2ϵ

The algorithm outputs h′ ≡ sign(h). Theorem 2 implies that

Prx[f(x) ̸= sign(h(x))] ≤ 2ϵ

3

2 Fourier Concentration

Now, we explore some applications of the Low Degree Algorithm.

2.1 Bounded-Depth Decision Trees

Recall from last lecture that in a decision tree, we define Vl as the set of variables visited on the path to
leaf l. We define the path functions fl(x) as

fl(x) =
1

2|Vl|

∑
S⊆Vl

(±1) · χS(x)

=

{
1 if x takes the path to l

0 otherwise

In a decision tree T ,

f(x) =
∑

l∈ leaves of T

fl(x) · val(l),

where val(l) is the output value at leaf l.

By our definition of fl, the number of variables that any given fl(x) depends on is at most the depth
of the tree. And val(l) is a constant. By the linearity of Fourier, we have

f̂(S) =
∑

val(l) · f̂l(S)

This means that for all S which have size greater than the depth of the tree (|S| > depth), f̂(S) = 0. So

f has depth-Fourier concentration. Therefore, by Theorem 3, we can use O(n
depth

ϵ log ndepth

δ) samples to
approximate f .

2.2 Constant Depth Circuits

We can think of any boolean circuit C as a directed acyclic graph where each node is a gate, which
can be an operation (“AND” ∧, “OR” ∨, or “NOT” ¬), a constant (1 or 0), or a variable (x1, ..., xn).
How many inputs are we allowed to wire into each ∧ or ∨ gate? The answer depends on the model we
use: some models allow for only a constant number of inputs to each gate (e.g. 2), some allow for a
polynomial number of inputs to each gate. In our model, we will allow an unbounded number of inputs
to each gate because we would like to observe behavior at the most “extreme” case.

Our question is: can we compute parity (XOR) of n bits in a circuit of constant depth? The answer
is yes, we can use Karnaugh maps to compute any function on n bits in constant depth! But can we
compute parity of n bits in a circuit of constant depth and size that is polynomial with respect to n?
No, according to the switching lemma proved by Furst, Saxe, and Sipser. However, we can use the
Low Degree Algorithm to approximate the parity function f(x) using a pseudo-polynomial number of
samples.

Theorem 4 (Hastad, Linial Mansour Nisan) For all functions f which are computable by circuits
of size s and depth d, ∑

|S|>t

f̂2(S) ≤ α

for t = O(log s
α)

d−1.

4

It follows that any such f has Fourier concentration t. If the circuit size s is polynomial with respect
to n, the circuit depth d is constant, and α is O(ϵ), then t = O(logd(nϵ)). According to Theorem 3,

this yields an algorithm which takes nO(logd(n
ϵ)) samples. Jackson showed that you can improve the

algorithm to use nO(log logn) samples. (Recall that the parity of S will have one large Fourier coefficient
of degree |S|.)

2.3 Learning Halfspaces

Definition 2 h(x) = sign(w · x− θ) is a halfspace function.

(Recall that sign(y) = +1 if y ≥ 0 and −1 otherwise.)

Theorem 5 Let h be a halfspace over {±1}n. Then h has Fourier concentration α(ϵ) = c
ϵ2 . That is,∑

|S|≥c/ϵ2

ĥ(S)2 ≤ ϵ

We will prove this later, but it leads us to the following corollary:

Corollary 1 The Low Degree Algorithm learns halfspaces under a uniform distribution with nO(1/ϵ2)

uniformly generated samples.

3 Noise Sensitivity

We introduce the concept of noise sensitivity, which is used to bound Fourier concentration.

Definition 3 A noise operator is the function Nϵ(x) = x but with each bit randomly flipped with
probability ϵ, where 0 < ϵ < 1

2 .

Definition 4 Noise sensitivity is how likely a function f changes if noise is added to its input x:

NSϵ(f) = Prx∈{±1}n & noise[f(x) ̸= f(Nϵ(x))]

We give the noise sensitivity of several example functions in the sections below:

3.1 f(x) = x1

The noise operator Nϵ(x) flips x1 with probability ϵ. Therefore,

NSϵ(f) = Pr[f(x) ̸= f(Nϵ(x))]

= Pr[Nϵ(x) flips x1]

= ϵ

3.2 f(x) = x1x2...xk

NSϵ(f) = Pr[f(x) = False ∧ f(Nϵ(x)) = True] + Pr[f(x) = True ∧ f(Nϵ(x)) = False]

= 2 · Pr[f(x) = False ∧ f(Nϵ(x)) = True]

= 2 · 1

2k
(1− (1− ϵ)k)

If ϵ << 1
k , then NSϵ(f) is approximately 1

2k−1 (ϵk).

If ϵ >> 1
k , then NSϵ(f) is approximately 1

2k−1 (1− e−kϵ).

5

3.3 f(x) = Maj(x1, ..., xn)

NSϵ(f) = O(
√
ϵ)

We’ll just give a sketch for this result: You can simulate Maj(x) using a random walk on a line.
You start at 0. Every time you see a +1 input bit, you move right one. Every time you see a −1 input
bit, you move left one. The value of Maj(x) is the sign of the node you end up at. For example, on
x = (+1,−1,−1,+1,+1,+1), you would start at 0, move right to 1, move left to 0, move left to -1, move
right to 0, move right to 1, and move right to 2. Since you end on a positive node (2), Maj(x) = +1.
Note that this is equivalent to taking the sign of the sum of the input bits.

Then Nϵ(x) is analogous to taking a random walk on a line of ϵn nodes. Each bit flip displaces our
walk by ±2 nodes (flipping -1 to +1 moves you to the right by two, and flipping +1 to -1 moves you left
two).

Fact E[|x1 + x2 + ...+ xn|] =
√
n and is likely to be close to

√
n.

By this fact, we know that the expected resulting displacement of our walk is

E[displacement] = 2
√
ϵn

So our process for determining whether f(x) ̸= f(Nϵ(x)) will go as follows:

1. Take the walk specified by x.

2. Continue the walk according to 2 ·Nϵ(x).

Using a heuristic argument, we can pretend that the first walk leaves us at
√
n. f(x) ̸= f(Nϵ(x)) if

the second walk takes us across node 0. We can bound the probability this will happen:

Pr[2nd walk takes us across 0] =
1

2
Pr[2nd displacement >

√
n]

√
n = 1

2
√
ϵ
· 2
√
ϵn, so by Markov’s inequality, we have

Pr[2nd walk takes us across 0] ≤ 2
√
ϵ

So the majority function has noise sensitivity ≤ 2
√
ϵ.

3.4 Linear Threshold Function (Halfspace)

Theorem 6 (Peres) NSϵ(LTF) < 8.8
√
ϵ, where LTF is any linear threshold function.

Note that this is the best possible, since NSϵ(Maj) = Θ(
√
ϵ).

3.5 Parity functions χS(x) for |S| = k

NSϵ(f) = Pr[Nϵ(x) flips an odd number of bits in S]

=
1− (1− 2ϵ)k

2

6

