6.842 lecture 2:

The Louise Local Lemma

The Lovasz Local Lemma

Another way to argue that it's possible that "nothing bad happens"

If $A_{1} A_{2} \ldots A_{n}$ are bad events how do we know that there is a positive probability that none occur?

$$
\operatorname{Pr}\left[A_{i}\right] \neq 1 \forall i
$$

if $A_{i}^{\prime} s$ independent + "nontrivial":

$$
\begin{aligned}
& \operatorname{Pr}\left[\cup A_{i}\right] \leq 1-\operatorname{Pr}\left[\cap \bar{A}_{i}\right] \\
&=1-\pi \underbrace{\operatorname{Pr}\left(\bar{A}_{i}\right)}_{>0} \\
&<1
\end{aligned}
$$

else, usual way: Union Bound
no assumptions $\quad \operatorname{Pr}\left[\cup A_{i}\right] \leq \sum \operatorname{Pr}\left[A_{i}\right]$ on A_{n}^{\prime} s with respect to independence
if each A_{i} occurs with prob $\leq \rho$, then need $p<\frac{1}{n}$ to get interesting bound ie, $\operatorname{Pr}\left[U A_{i}\right]<1$

What if Ais have "some" inclependence?
def. A "independent" of $B_{1} B_{2} \ldots B_{k}$ if
$\forall \underset{J}{J} \neq \varphi \in[k] \quad$ then $\operatorname{Pr}\left[A \cap \bigcap_{j \in J} \beta_{j}\right]$
note:
$[k]$ means $\{1 \ldots k\}$

$$
=\operatorname{Pr}[A] \cdot \operatorname{Pr}\left[\bigcap_{k J T} B_{j}\right]
$$

def. $A_{1} \ldots A_{n}$ events
$D=(V, E)$ with $V=[n]$ is
"dependency digraph of $A_{1} \because A_{n}$ "
if each A_{i} independent of all A_{j} that are not neighbors in D (ie. all A_{j} st. $(i, j) \notin E$)

Lovász Local Lemma (symmetric version)
$A_{1} . . A_{n}$ events sit. $\operatorname{pr}\left(A_{i}\right) \leq p \quad \forall i$ with dependency digraph D st. D has max degree $\leq d$. If ep $(d+1) \leq 1$ then

$$
\operatorname{Pr}\left[\bigwedge_{i=1}^{n} \bar{A}_{i}\right]>0
$$

$\frac{\text { Union bid }}{\text { need }}$ if $\frac{L L L}{d \leq 4}$ $p<\frac{1}{n} \quad$ only need

$$
p \leq \frac{1}{e^{\cdot(4+1)}}
$$

Application

Th m. Given $\quad S_{1} \ldots S_{m} \subseteq \bar{X} \quad\left|S_{i}\right|=\ell$ each S_{i} intersects at moot d other S_{g}^{\prime} previously
needed
mad if $e \cdot(d+1) \leq 2^{l-1}$
$\left.\begin{array}{l}m<2^{l-1} \\ \text { now no }\end{array}\right\}$ then can 2 -color \bar{X} such that restriction each S_{i} not monochromatic
on m but there is a restriction on "degree"
ie. If is hypergraph with m edges, each containing l nodes + each intersecting $\leq d$ other edges

Pf color each elf of X red/blue ind with prob $\frac{1}{2}$ $A=$ event that $S_{\text {. }}$ is monochromatic

$$
p=\operatorname{Pr}\left[A_{i}\right]=1 / 2^{l-1}
$$

A_{i} indep of all A_{j} st. $S_{i} \cap S_{j}=\varphi$ so depends on $\leq d$ other A_{j}
since ep. $(d t)=e \cdot \frac{1}{2^{l-1}} \cdot d t \leq \leq 1$

$$
L L L \Rightarrow \exists 2 \text {-coloring }
$$

Comparison:
\#edges $=m$
size of edges $=l$

$$
m<2^{l-1}
$$

\#edges $=m$
size of edges $=l$
each edge intersects with $\leq d$ others

Application 2: Boolean Formulae

Given CNF formula sit. l vars in each clause + each var in $\leq k$ clauses If $\frac{e(l k+1)}{2^{l-1}} \leq 1$ there is a satisfying assignment,

How do you find a solution?
partial history:
Lovász 1975 nonconstructive (no fast algorithm to find sol)
Beck 1991 randomized algorithm but for more restrictive Conditions on parameters
Alow 1991 parallel version

Moses 2009 negligible restrictions $d \leq \frac{2^{l-1}}{c}$ for SAT

Moses Tardos d most other problems

Moser-Tardos The:
Given $S_{1} \ldots S_{m} \leq X$, st. each S_{i} intersects $\leq d$ other $S_{j}^{\prime} s$.
If $e(d+1) \cdot c \leq 2^{\lambda-1}$ then can find 2 -coloring of X s.t. each S_{i} not monochromatic in time poly in $m,|X|$.

Maser - Tardos Algorithm
(1) 2-color all elements of X randomly (pros, id)
(2) While not proper 2-coloring of S_{i}^{\prime} 's

- pick (arbitrary) monochromatic S_{i} t randomly reassign colors to elements of S_{i}
we will do Beck-like algorithm, (stronger assumptions, much slower, more complicated algorithm, hopefully easier to explain?)

Stronger assumptions:
(1) For today, assume l, d constants
(2)

$$
\begin{aligned}
& \text { Binary } \begin{array}{l}
\text { Entropy } H(x) \equiv-x \log _{2} x-(1-x) \log _{2}(1-x) \\
\text { Let }=2 \cdot 2^{(H(\alpha)-1) \cdot l} \\
\text { ed } p^{\frac{1}{d+1}}<1 / 2
\end{array}
\end{aligned}
$$

(3) $2 e(d+1)<2^{\alpha n}$

Algorithm: Given $S_{1} \ldots S_{m} \leq \mathbb{X} \quad\left|S_{i}\right|=\ell \forall i$
First pass:
for each $j \in X$ pick color red/blue via coin toss
S_{i} is "bad" if $\leq \alpha \cdot l$ reds or $\leq \alpha \cdot l$ blues
$B \leftarrow\left\{s_{i} \mid s_{i}\right.$ is bad $\}$
pst pass is successful if all "connected components" of B are $\leq d \log m$ edge bet
(if not successful, retry)

Second Puss:
Brute force each connected component efficient? (who violating their nbrs)

Some questions:

- why is output legal? what if Changing $S_{i}^{\prime} \cdot \sin B$ makes $S_{j} \notin B$ monochromatic?
- How man times to repeat pass 1?.
- How fast is pass 2?

How could this work??

Why is output legal?
First pass:
for each $j \in X$ pick color red/blue via coin toss

$$
\begin{aligned}
& S_{i} \text { is "bad" if } \begin{array}{l}
\text { or } \leq \alpha \cdot l \\
\text { odds } \\
\text { blues }
\end{array} \\
& B \leftarrow\left\{S_{i} \mid S_{i} \text { is bad }\right\}
\end{aligned}
$$

pass successful if all "connected components" of bad $S!s$ are $\leq d \log m$
(if not successful, retry)
Second Pass: Brute force each connected component

If S_{i} not bad $+\angle \alpha n$ nodes in bad nbs
then S_{i} will still be bichromaticafter recoloring.
If S_{i} bad + has $\geq \alpha l$ nodes in bad nbrs, then $\geqslant \alpha l$ nodes get recolored

- if recolored randomly, $\operatorname{Pr}\left[S_{i}\right.$ is mohochrom $]$
- using LUL $<2^{-2 l}$
assumptions + assume $2 e(d+1)<2^{\alpha l}$
\Longrightarrow Solution exists!

How many repetitions of Pass 1?

$$
\text { fact for } H(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)
$$

$\forall S_{i}, \quad \operatorname{Pr}\left[S_{i}\right.$ bad $] \leq 2 \cdot \sum_{i \leq \alpha n}\binom{l}{i} / 2^{l} \leq \underbrace{\downarrow \cdot(H(\alpha)-1) l}$

$$
\leq p
$$

define this to be p

$$
\approx 2^{-c l} \text { for }_{\substack{\text { some } \\ \text { cons } c}}
$$

Given dependency digraph G,
put edge between $S_{i}+S_{j}$ if $S_{i} \cap S_{j} \neq \varphi$
if $S_{i_{1},} S_{i_{\gamma}} \ldots, S_{i_{m}}$ are independent set
(so $\left.\quad s_{i_{k}} \cap s_{\lambda_{l}}=\varphi \quad \forall i_{k}, i_{l}\right)$
then $\operatorname{Pr}\left[S_{i_{1}} \ldots S_{i_{m}}\right.$ all in $\left.B\right] \leqslant p^{m}$

First try

Show no big component survives:
$\operatorname{Pr}[$ specific big size component suruves]
$\leq \operatorname{Pr}\left[\right.$ big $^{\text {sind }}$ independent set in comproant survives $]$

$$
\leq p^{s^{\prime}}
$$

Pr [any big component survives]

$$
\leq \text { \# big components } \cdot \underbrace{p^{s^{\prime}}}
$$

what is a good bound?
$\binom{n}{5}$? way too big!!
how does S^{\prime} compare to S ? if component is clique, then s^{\prime} could be 1 but, use degree bound!
can use degree bound to improve!!

Plan: hope to show no big component sorvives. if big component C survives,
an get \rightarrow then C has a big subtree good bound on \# banded degree that survives subtrees!
then can find (less) big independent since \longrightarrow set in subtree banded degree

Well known fact:
\# subtrees of size u in graph of

$$
\begin{aligned}
\text { degree } \leq \Delta \quad \text { is } & \leq n \cdot \frac{1}{(\Delta-1)(u+1)}\binom{\Delta u}{u} \\
& \leq n(e \Delta)^{u}
\end{aligned}
$$

much much better than ($\binom{n}{u}$ when Δ is constant

Given subtree of size $u_{\text {, }}$
it has indep set of size $\geq \frac{U}{\Delta+1}$
why?
Repeat
each round: $\{I \leftarrow$ arbitrary node u in sobtree

- Igets biggerbyl remove $u+$ all nbs of u from
- subtree gets

Smaller by Until subtree $\leq \Delta+1 \quad$ Until subtree is empty

$$
\Rightarrow \# \text { rounds }=|I| \geq \frac{u}{\Delta t}
$$

New try:

Show no big component survives:
$E[\#$ of sine $>S$ subtrees that survive $]$ $\leq \sum_{i=S}^{m} E[\#$ size i subtrees thatsorvive]
hiding

(3)

$$
\leq \sum_{i=s}^{m} m \cdot \underbrace{m \cdot d)^{i} \times\left(p^{\frac{i}{d+1}}\right)}_{\underbrace{\left(e d p^{\frac{1}{d+1}}\right.}_{\text {assume }})^{i}} \text { is }<1 / 2
$$

$$
\begin{aligned}
\leq \sum_{i=s}^{m} m \cdot \frac{1}{2} i & \leq \frac{m}{2^{s-1}} \quad \begin{array}{c}
\text { upper } \\
\text { bund on } \\
\text { expected }
\end{array} \\
& \leq \frac{m}{4 m}=1 / 4 \begin{array}{l}
\downarrow \text { \# of } \\
\text { big } \\
\text { composer }
\end{array}
\end{aligned}
$$ components

By Markov's \neq :

$$
\operatorname{Pr}[\# \text { of size } \geq \log 4 m \text { subtrees } \cdot>0]<\frac{1}{4}
$$

so $\operatorname{Pr}[\#$ components of size $\geq \log 4 m$ is $>0]<1 / 4$
\Rightarrow expected \# times to repeat first pass

$$
\leq 4
$$

How fast is Pass 2?
\# Surviving components $\leq O(\log m)$
\# settings to vars in surviving

$$
\begin{aligned}
\text { components } & \leq 2^{l o(l o g m)} \\
& =m^{o(l)}
\end{aligned}
$$

if l is constant: poly (m) time $*$ assumption else, recurs on components

